Siti Nurjannah, - (2021) ANALISIS KEMAMPUAN ABSTRAKSI MATEMATIS SISWA SMA DITINJAU DARI TINGKAT ADVERSITY QUOTIENT. S2 thesis, Universitas Pendidikan Indonesia.
Text
T_MTK_1802629_Title.pdf Download (259kB) |
|
Text
T_MTK_1802629_Chapter1.pdf Download (429kB) |
|
Text
T_MTK_1802629_Chapter2.pdf Restricted to Staf Perpustakaan Download (764kB) |
|
Text
T_MTK_1802629_Chapter3.pdf Download (675kB) |
|
Text
T_MTK_1802629_Chapter4.pdf Restricted to Staf Perpustakaan Download (1MB) |
|
Text
T_MTK_1802629_Chapter5.pdf Download (451kB) |
|
Text
T_MTK_1802629_Appendix.pdf Restricted to Staf Perpustakaan Download (3MB) |
Abstract
Penelitian ini bertujuan untuk mendeskripsikan level kemampuan abstraksi matematis pada materi aplikasi turunan fungsi ditinjau dari tingkat Adversity Quotient (AQ) yang dimiliki siswa, menelaah keterkaitan secara kualitatif antara level abstraksi matematis dengan tingkat Adversity Quotient (AQ) siswa, dan mengetahui kesalahan yang dialami siswa berdasarkan teori Newman dalam menyelesaikan soal tes kemampuan abstraksi matematis pada materi aplikasi turunan fungsi ditinjau dari tingkat Adversity Quotient (AQ). Penelitian ini merupakan penelitian deskriptif dengan menggunakan pendekatan kualitatif. Subjek penelitian ini diperoleh dengan melaksanakan tes Adversity Quotient (AQ) menggunakan instrumen kuesioner Adversity Response Profile (ARP) yang dikembangkan oleh Stoltz (2000) yang diikuti oleh 34 siswa kelas XI salah satu Sekolah Menengah Atas di Kabupaten Indramayu. Hasil kuesioner ARP mengklasifikasi dari 34 siswa menjadi 6 siswa untuk mengikuti tes kemampuan abstraksi matematis, masing-masing di ambil 2 siswa berdasarkan tingkatan AQ yaitu 2 siswa Quitter (Qu), 2 siswa Camper (Ca), 2 siswa Climber (Cl). Kemampuan abstraksi matematis dibagi menjadi 4 level yaitu level 1 pengenalan (recognition), level 2 representasi (representation), level 3 abstraksi strutural (abstraction structural), dan level 4 kesadaran abstraksi (abstraction awarenes). Hasil tes kemampuan abstraksi matematis siswa menunjukkan siswa Qu berada pada level transisi untuk level 1 hingga 4. Siswa Ca juga berada pada level lengkap sebagian untuk level 1 hingga 4. Siswa Cl berada pada level lengkap untuk seluruh level 1 hingga level 4. Keterkaitan secara kualitatif yang ditemukan antara level abstraksi matematis dengan tingkatan AQ siswa Camper dan Climber dimana kedua siswa secara konsisten dalam menjawab soal level 1 hingga 4 dengan lengkap. Beberapa jenis kesalahan ditemukan saat siswa menyelesaikan soal abstraksi matematis diantaranya kategori kesalahan CE (Comprehension Error), TE (Transformation Error), PSE (Process Skill Error), dan EE (Econding Error). Kata Kunci: abstraksi matematis, aplikasi turunan fungsi, adversity quotient, kesalahan siswa, teori Newman Siti Nurjannah (2021) Analysis of Mathematical Abstraction Ability for Senior High School Students Viewed by Adversity Quotient This study aims to describe the level of mathematical abstraction ability in the application material of functional derivatives in terms of the level of Adversity Quotient (AQ) students have, examine the qualitative relationship between the level of mathematical abstraction and the level of adversity quotient (AQ) students, and determine the errors experienced by students based on Newman's theory in solving mathematical abstraction ability test questions on the application material derived from functions in terms of the level of Adversity Quotient (AQ). This research is a descriptive study using a qualitative approach. The subjects of this study were obtained by implementing the Adversity Quotient (AQ) test using the Adversity Response Profile (ARP) questionnaire instrument developed by Stoltz (2000) which was attended by 34 students of class XI one of the high schools in Indramayu Regency. The results of the ARP questionnaire classify from 34 students into 6 students to take the mathematical abstraction ability test, each of which is taken by 2 students based on AQ level, namely 2 Quitter (Qu) students, 2 Camper (Ca) students, 2 Climber (Cl) students. Mathematical abstraction ability is divided into 4 levels, namely level 1 recognition, level 2 representation, level 3 structural abstraction, and level 4 abstraction awareness. The results of the students' mathematical abstraction ability test showed that Qu students were at a transitional level for levels 1 to 4. Ca students were also at a partial complete level for levels 1 to 4. Cl students were at the complete level for all levels 1 to level 4. Qualitative linkages which was found between the level of mathematical abstraction and the AQ level of the Camper and Climber students where the two students consistently answered questions level 1 to 4 completely. Several types of errors were found when students solved mathematical abstraction questions including the error category CE (Comprehension Error), TE (Transformation Error), PSE (Process Skill Error), and EE (Econding Error). Keywords: mathematical abstraction, derivative application, adversity quotient, student error, Newman's theory
Item Type: | Thesis (S2) |
---|---|
Uncontrolled Keywords: | abstraksi matematis, aplikasi turunan fungsi, adversity quotient, kesalahan siswa, teori Newman |
Subjects: | L Education > L Education (General) L Education > LB Theory and practice of education > LB1603 Secondary Education. High schools Q Science > QA Mathematics |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Pendidikan Matematika |
Depositing User: | Siti Nurjannah |
Date Deposited: | 09 Apr 2021 02:18 |
Last Modified: | 09 Apr 2021 02:18 |
URI: | http://repository.upi.edu/id/eprint/60238 |
Actions (login required)
View Item |