LEARNING OBSTACLE PESERTA DIDIK SMP DALAM MENYELESAIKAN MASALAH KONEKSI MATEMATIS PADA MATERI OPERASI BENTUK ALJABAR

    Widi Rahmawati Drajat, - and Al Jupri, - and Sumanang Muhtar Gozali, - (2025) LEARNING OBSTACLE PESERTA DIDIK SMP DALAM MENYELESAIKAN MASALAH KONEKSI MATEMATIS PADA MATERI OPERASI BENTUK ALJABAR. S2 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Salah satu kemampuan mendasar dalam matematika adalah koneksi matematis, yaitu kemampuan peserta didik untuk mengaitkan konsep matematika dengan topik lain, bidang studi lain, maupun konteks kehidupan sehari-hari. Namun, pada kenyatannya banyak peserta didik masih mengalami hambatan dalam memahami materi matematika, terutama pada operasi bentuk aljabar. Penelitian ini bertujuan untuk mengidentifikasi hambatan belajar yang dialami peserta didik dalam menyelesaikan masalah koneksi matematis pada materi operasi bentuk aljabar serta merancang desain didaktis sebagai rekomendasi pembelajaran. Penelitian ini menggunakan pendekatan kualitatif dengan metode studi kasus, melibatkan 30 peserta didik kelas VIII di salah satu SMP Negeri di Kabupaten Indramayu, Provinsi Jawa Barat. Data penelitian diperoleh melalui observasi, tes kemampuan koneksi matematis, wawancara, dan analisis dokumen. Hasil penelitian menunjukkan adanya tiga jenis hambatan belajar: Ontogenical obstacle tampak dari lemahnya kemampuan mengingat prosedur dasar aljabar, rendahnya motivasi belajar, dan kebiasaan belajar yang kurang mendukung. Didactical obstacle muncul akibat penggunanan buku ajar yang tidak memberikan penjelasan konsep secara mendalam. Epistemologis obstacle terlihat dari miskonsepsi, seperti menjumlahkan suku tidak sejenis, kesalahan penggunaan rumus, serta ketidakmampuan menghubungkan konsep aljabar dengan topik matematika lainnya maupun bidang studi lain. Sebagai Solusi, dirancang desain didaktis berbasis problem-based learning dalam bentuk LKPD yang terintegrasi dengan komponen koneksi matematis. Desain ini mencakup enam kegiatan pembelajaran yang menghubungkan operasi bentuk aljabar dengan konteks geometri, fisika, ekonomi, dan kehidupan sehari-hari. Setiap kegiatan dilengkapi prediksi respons peserta didik, langkah antisipasi guru, serta mengadopsi pendekatan Bruner (enaktif-ikonik-simbolik) dan scaffolding Vygotsky. One of the fundamental abilities in mathematics is mathematical connection, which is the ability of students to relate mathematical concepts to other topics, other fields of study, and everyday life contexts. However, in reality, many students still experience obstacles in understanding mathematical material, especially in algebraic operations. This study aims to identify learning obstacles experienced by students in solving mathematical connection problems in algebraic operations and to design a didactic design as a learning recommendation. This study uses a qualitative approach with a case study method, involving 30 eighth-grade students at a junior high school in Indramayu Regency, West Java Province. Research data were obtained through observation, mathematical connection ability tests, interviews, and document analysis. The results of the study indicate three types of learning obstacles: Ontogenic obstacles are evident from the weak ability to remember basic algebraic procedures, low learning motivation, and less supportive learning habits. Didactic obstacles arise from the use of textbooks that do not provide in-depth explanations of concepts. Epistemological obstacles are evident in misconceptions, such as adding unlike terms, incorrect use of formulas, and the inability to connect algebraic concepts with other mathematical topics or other fields of study. As a solution, a didactic design based on problem-based learning was designed in the form of Student Worksheets (LKPD) integrated with mathematical connection components. This design includes six learning activities that connect algebraic operations with the contexts of geometry, physics, economics, and everyday life. Each activity is equipped with predicted student responses, teacher anticipatory steps, and adopts Bruner's approach (enactive-iconic-symbolic) and Vygotsky's scaffolding.

    [thumbnail of T_MTK_2307973_Title.pdf] Text
    T_MTK_2307973_Title.pdf

    Download (434kB)
    [thumbnail of T_MTK_2307973_Chapter1.pdf] Text
    T_MTK_2307973_Chapter1.pdf

    Download (321kB)
    [thumbnail of T_MTK_2307973_Chapter2.pdf] Text
    T_MTK_2307973_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (264kB)
    [thumbnail of T_MTK_2307973_Chapter3.pdf] Text
    T_MTK_2307973_Chapter3.pdf

    Download (112kB)
    [thumbnail of T_MTK_2307973_Chapter4.pdf] Text
    T_MTK_2307973_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (4MB)
    [thumbnail of T_MTK_2307973_Chapter5.pdf] Text
    T_MTK_2307973_Chapter5.pdf
    Restricted to Staf Perpustakaan

    Download (291kB)
    [thumbnail of T_MTK_2307973_Chapter6.pdf] Text
    T_MTK_2307973_Chapter6.pdf

    Download (76kB)
    [thumbnail of T_MTK_2307973_Appendix.pdf] Text
    T_MTK_2307973_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (9MB)
    Official URL: https://repository.upi.edu/
    Item Type: Thesis (S2)
    Additional Information: https://scholar.google.com/citations?user=RCVz_I0AAAAJ&hl=en ID SINTA Dosen Pembimbing: Al Jupri: 5974523 Sumanang Muhtar Gozali: 6121808
    Uncontrolled Keywords: Learning obstacle, Koneksi matematis, Operasi bentuk aljabar Learning obstacles, Mathematical connections, Algebraic operations
    Subjects: L Education > L Education (General)
    L Education > LB Theory and practice of education > LB1603 Secondary Education. High schools
    Q Science > QA Mathematics
    Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Pendidikan Matematika - S2
    Depositing User: Widi Rahmawati Drajat
    Date Deposited: 22 Dec 2025 06:08
    Last Modified: 22 Dec 2025 06:08
    URI: http://repository.upi.edu/id/eprint/145987

    Actions (login required)

    View Item View Item