Jonathan Suara Patty, - (2024) ANALISIS DINAMIS DAN DECISION TREE CLASSIFIER UNTUK MALICIOUS OFFICE DAN PDF. S1 thesis, Universitas Pendidikan Indonesia.
Text
S_KOM_1804114_Title.pdf Download (259kB) |
|
Text
S_KOM_1804114_Chapter1.pdf Download (149kB) |
|
Text
S_KOM_1804114_Chapter2.pdf Restricted to Staf Perpustakaan Download (246kB) |
|
Text
S_KOM_1804114_Chapter3.pdf Download (479kB) |
|
Text
S_KOM_1804114_Chapter4.pdf Restricted to Staf Perpustakaan Download (524kB) |
|
Text
S_KOM_1804114_Chapter5.pdf Download (135kB) |
|
Text
S_KOM_1804114_Appendix.pdf Restricted to Staf Perpustakaan Download (171kB) |
Abstract
Penelitian ini menyoroti analisis dinamis terhadap malware yang digunakan dalam serangan phishing berbentuk dokumen, dengan memanfaatkan decision tree classifier untuk meningkatkan langkah-langkah keamanan siber. Sampel malware dikumpulkan dengan cermat dari honeypot suatu perusahaan, mewakili beragam potensi ancaman. Dari sampel yang dikumpulkan, beberapa akan ditetapkan untuk melatih decision tree dan beberapa sampel lainnya akan digunakan untuk mengevaluasi kinerjanya. Analisis dinamis dilakukan dalam lingkungan mesin virtual Linux untuk memastikan tempat pengujian yang terkontrol dan aman. Decision tree dibangun menggunakan Python, dengan mengintegrasikan pustaka scikit-learn yang kuat. Dengan menggunakan metode classifier, decision tree mampu membedakan secara efektif antara sampel benign dan sampel berbahaya, menunjukkan ketangguhannya dalam mengidentifikasi ancaman. Selain itu, decision tree mampu mengkategorikan malware yang teridentifikasi menjadi empat klasifikasi yang berbeda: bot, trojan, ransomware, dan spyware. Pendekatan komprehensif ini tidak hanya menyoroti efektivitas decision tree classifier dalam deteksi malware tetapi juga menegaskan potensinya dalam menyempurnakan proses klasifikasi malware. Temuan ini menunjukkan bahwa penerapan teknik semacam itu dapat secara signifikan memperkuat akurasi dan keandalan pertahanan keamanan siber terhadap serangan phishing yang canggih. This research focuses on the dynamic analysis of malware used in document-based phishing attacks, leveraging a decision tree classifier to enhance cybersecurity measures. The malware samples were meticulously gathered from a company's honeypot, representing a wide array of potential threats. Among these, several samples were designated for training the decision tree, while several more were utilized to evaluate its performance. The dynamic analysis was executed within a Linux virtual machine environment to ensure a controlled and secure testing ground. The decision tree was constructed using Python, incorporating the powerful scikit-learn library. By employing the classifier method, the decision tree effectively distinguished between benign and malicious samples, showcasing its robustness in identifying threats. Additionally, the decision tree was capable of further categorizing the identified malware into four distinct classifications: bots, trojans, ransomware, and spyware. This comprehensive approach not only highlights the efficacy of decision tree classifiers in malware detection but also underscores their potential in refining malware classification processes. The findings suggest that employing such techniques can significantly bolster the accuracy and reliability of cybersecurity defenses against sophisticated phishing attacks.
Item Type: | Thesis (S1) |
---|---|
Additional Information: | https://scholar.google.com/citations?hl=en&user=_2CJgCoAAAAJ ID SINTA Dosen Pembimbing: Rizky Rachman Judhie Putra: 5993953 Yudi Ahmad Hambali: 6745712 |
Uncontrolled Keywords: | Analisis Dinamis, Decision Tree, Dokumen, Keamanan Siber, Malware, Phishing. Cybersecurity, Decision Tree, Document, Dynamic Analysis, Malware, Phishing |
Subjects: | L Education > L Education (General) Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QA Mathematics > QA76 Computer software |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Ilmu Komputer |
Depositing User: | Jonathan Suara Patty |
Date Deposited: | 11 Sep 2024 15:30 |
Last Modified: | 11 Sep 2024 15:30 |
URI: | http://repository.upi.edu/id/eprint/123350 |
Actions (login required)
View Item |