Urfa, Ishma Fadlina (2014) PRODUK SILANG ATAS SEMIGRUP ENDOMORFISMA. S1 thesis, Universitas Pendidikan Indonesia.
|
Text
S_MTK_1005324_Title.pdf Download (144kB) | Preview |
|
|
Text
S_MTK_1005324_Abstract.pdf Download (245kB) | Preview |
|
|
Text
S_MTK_1005324_Table_of_content.pdf Download (362kB) | Preview |
|
|
Text
S_MTK_1005324_Chapter1.pdf Download (324kB) | Preview |
|
Text
S_MTK_1005324_Chapter2.pdf Restricted to Staf Perpustakaan Download (485kB) |
||
|
Text
S_MTK_1005324_Chapter3.pdf Download (457kB) | Preview |
|
Text
S_MTK_1005324_Chapter4.pdf Restricted to Staf Perpustakaan Download (379kB) |
||
|
Text
S_MTK_1005324_Chapter5.pdf Download (256kB) | Preview |
|
|
Text
S_MTK_1005324_Bibliography.pdf Download (136kB) | Preview |
Abstract
Misal Γgrup abelian terurut total dan Γ^+ adalah bagian positifnya, B_(Γ^+ )aljabar-C^*, dan α:Γ^+⟶Endo(B_(Γ^+ )) adalah aksi dari semigrup Γ^+ pada B_(Γ^+ ) melalui endomorfisma.Representasi isometrik V dari Γ^+adalah homomorfisma dari semigrup Γ^+ ke semigrup isometri Isom(H) pada ruang Hilbert H. Adji, Laca, Nilsen, dan Raeburn (1994) telah membuktikan eksistensi representasi kovarian (π_V,V)dan bentuk produk silang yang dibangun oleh representasi isometrik B_(Γ^+ ) ×_α Γ^+ dari sistem dinamik (B_(Γ^+ ),Γ^+,α), serta hubunganB_(Γ^+ ) ×_α Γ^+ dengan aljabar-C^* yang dibangun oleh unsur-unsur isometri non-uniter. Pada tugas akhir ini akan dilihat bagaimana konstruksi pembuktian hasil-hasil diatas. Let Γ be totally ordered abelian group and Γ^+ be its positive cone, B_(Γ^+ ) a C^*-algebra, and α:Γ^+⟶Endo(B_(Γ^+ )) an action of Γ^+ on B_(Γ^+ ) by endomorphisms. An isometric representation of Γ^+ is a homomorphism of the semigroup Γ^+ into the semigroup of isometries Isom(H) on a Hilbert space H. Adji, Laca, Nilsen and Raeburn (1994) prove the existence of covariant representation (π_V,V) and crossed product generated by isometric representation B_(Γ^+ ) ×_α Γ^+ of dynamical system (B_(Γ^+ ),Γ^+,α), and also the relation between B_(Γ^+ ) ×_α Γ^+ and a C^*-algebra generated by nonunitary isometric representations. In this paper, we study how they construct the proof.
Item Type: | Thesis (S1) |
---|---|
Additional Information: | No. Panggil: S MTK URF p-2014; Pembimbing: I. Rizky Rosjanuardi, II. Isnie Yusnitha |
Uncontrolled Keywords: | produk silang, aljabar-C^*, semigrup, endomorfisma, representasi isometrik. |
Subjects: | Q Science > QA Mathematics |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Matematika (non kependidikan) |
Depositing User: | Staf Koordinator 3 |
Date Deposited: | 16 Sep 2015 02:23 |
Last Modified: | 16 Sep 2015 02:23 |
URI: | http://repository.upi.edu/id/eprint/16615 |
Actions (login required)
View Item |