Ririn Indriyani, - and Khusnul Novianingsih, - and Sumanang Muhtar Gozali, - (2025) PENYELESAIAN MASALAH PENJADWALAN FLEXIBLE JOB SHOP WITH DUE WINDOWS DENGAN GABUNGAN ALGORITMA GENETIKA DAN SIMULATED ANNEALING: Studi Kasus Penjadwalan Produksi Sepatu dan Sandal di Kota Bandung. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Penelitian ini mengkaji masalah flexible job shop with due windows yang merupakan masalah flexible job shop, di mana terdapat beberapa alternatif mesin untuk mengoperasikan sejumlah job dengan mempertimbangkan adanya due windows, yaitu interval waktu yang diperbolehkan untuk menyelesaikan suatu job. Penyelesaian masalah flexible job shop with due windows bertujuan untuk meminimalkan penalti earliness dan tardiness berdasarkan batas waktu penyelesaian (due windows), sehingga seluruh job dapat selesai pada suatu interval waktu yang telah ditentukan. Penelitian ini menyelesaikan masalah penjadwalan flexible job shop with due window dengan menggunakan gabungan algoritma genetika dan simulated annealing (GASA). Tahapan metode ini diawali dengan melakukan pencarian solusi menggunakan algoritma genetika yang terdiri dari pembangkitan populasi awal, evaluasi nilai fitness, seleksi, crossover, dan mutasi. Proses pencarian solusi dengan algoritma genetika dilakukan hingga kriteria penghentian algoritma genetika terpenuhi dan diperoleh solusi terbaik dari algoritma genetika. Solusi tersebut digunakan sebagai solusi awal pada metode simulated annealing. Seluruh rangkaian proses ini diulang hingga tercapai kriteria penghentian. Solusi terbaik diambil dari solusi global yang memiliki nilai fungsi objektif terkecil. Masalah penjadwalan flexible job shop with due windows dengan menggunakan GASA diterapkan pada suatu perusahaan produksi sepatu dan sandal di Kota Bandung. Hasil implementasi menunjukkan bahwa GASA dapat menyelesaikan penjadwalan flexible job shop with due windows dengan optimal sehingga seluruh job dapat selesai tepat pada interval waktu yang ditentukan. Selain itu, GASA menghasilkan solusi masalah flexible job shop with due windows lebih baik dibandingkan hanya menggunakan algoritma genetika ataupun simulated annealing. This research investigates the flexible job shop with due windows problem which is a flexible job shop problem, where multiple alternative machines are available to operate a set of jobs while considering the presence of due windows, which represent the time intervals allowed to complete each job. The solution to the flexible job shop with due windows problem aims to minimize earliness and tardiness penalties based on due windows so that all jobs can be completed within a specified time interval. This research addresses the scheduling problem of a flexible job shop with due windows using a combination of genetic algorithm and simulated annealing (GASA). The stages of this method begin with searching for solutions using a genetic algorithm, which consists of initial population generation, fitness value evaluation, selection, crossover, and mutation. The solution search process with the genetic algorithm continues until the termination criteria are met and the best solution is obtained. The solution is used as the initial solution in the simulated annealing method. The entire sequence of processes is repeated until the stopping criteria are met. The best solution is taken from the global solution that has the smallest objective function value. The flexible job shop with due windows scheduling problem using GASA is applied to a shoes and sandals production company in the city of Bandung. The implementation results demonstrate that the GASA can optimally schedule a flexible job shop with due windows, ensuring that all jobs are completed within the specified time intervals. Furthermore, the GASA method produces better solutions for the flexible job shop with due windows problem compared to using the genetic algorithm or the simulated annealing.
![]() |
Text
S_MAT_2101579_Title.pdf Download (778kB) |
![]() |
Text
S_MAT_2101579_Chapter1.pdf Download (240kB) |
![]() |
Text
S_MAT_2101579_Chapter2.pdf Restricted to Staf Perpustakaan Download (582kB) |
![]() |
Text
S_MAT_2101579_Chapter3.pdf Download (503kB) |
![]() |
Text
S_MAT_2101579_Chapter4.pdf Restricted to Staf Perpustakaan Download (1MB) |
![]() |
Text
S_MAT_2101579_Chapter5.pdf Download (195kB) |
![]() |
Text
S_MAT_2101579_Appendix.pdf Restricted to Staf Perpustakaan Download (2MB) |
Item Type: | Thesis (S1) |
---|---|
Additional Information: | https://scholar.google.com/citations?user=dNlur4gAAAAJ&hl=en ID SINTA Dosen Pembimbing: Khusnul Novianingsih: 258640 Sumanang Muhtar Gozali: 6121808 |
Uncontrolled Keywords: | Penjadwalan, Flexible Job Shop, Due Windows, Gabungan Algoritma genetika dan Simulated Annealing (GASA) Scheduling, Flexible Job Shop, Due Windows, Combination of Genetic Algorithm and Simulated Annealing (GASA) |
Subjects: | Q Science > Q Science (General) Q Science > QA Mathematics T Technology > T Technology (General) T Technology > TS Manufactures |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Matematika - S1 > Program Studi Matematika (non kependidikan) |
Depositing User: | Ririn Indriyani |
Date Deposited: | 13 Aug 2025 06:29 |
Last Modified: | 13 Aug 2025 06:29 |
URI: | http://repository.upi.edu/id/eprint/135536 |
Actions (login required)
![]() |
View Item |