Hana Nabila Kansah, - and Khusnul Novianingsih, - and Imam Nugraha Albania, - (2025) PENYELESAIAN MASALAH HYBRID FLOWSHOP SCHEDULING MENGGUNAKAN ALGORITMA DISCRETE ARTIFICIAL BEE COLONY. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Penelitian ini meneliti masalah Hybrid Flowshop Schedulling (HFS), yaitu masalah penjadwalan produksi yang melibatkan beberapa tahap pemprosesan dengan setiap tahap proses memiliki setidaknya satu mesin paralel identik. Tujuan utama dari penyelesaian masalah HFS adalah untuk menentukan mesin yang digunakan pada setiap tahapan agar diperoleh makespan yang minimum. Penelitian ini mengimplementasikan algoritma Discrete Artificial Bee Colony (DABC) untuk menyelesaikan masalah HFS. algoritma DABC terinspirasi dari perilaku koloni lebah dalam mencari sumber makanan. algoritma ini mensimulasikan interaksi antara tiga jenis lebah yaitu Lebah Pekerja (Employed Bees), Lebah Pengamat (Onlooker Bees), Lebah Pengintai (Scout Bees), di mana setiap sumber makanan merepresentasikan kemungkinan solusi (urutan job), sedangkan nilai fitness yang menunjukkan kualitas solusi tersebut. Implementasi DABC pada masalah HFS di sebuah pabrik tekstil telah menghasilkan solusi yang lebih optimal dengan makespan yang minimum. Penelitian ini juga membandingkan performa algoritma DABC dengan algoritma Migrating Birds Optimization (MBO) yang pernah digunakan pada penelitian sebelumnya. Hasil perbandingan menunjukkan bahwa algoritma DABC mampu memberikan solusi dengan makespan yang lebih optimal dari pada algoritma MBO. Ini membuktikan efektivitas algoritma DABC dalam menyelesaikan masalah HFS. This research studies the Hybrid Flowshop Scheduling (HFS) problem, a complex production scheduling issue with multiple processing stages, each featuring at least one identical parallel machine. The primary goal in tackling the HFS problem is to identify the machines used at each stage to achieve the minimum makespan. In this study, we implement the Discrete Artificial Bee Colony (DABC) Algorithm to solve the HFS problem. Inspired by the behavior of bee colonies in searching for food sources, this algorithm simulates the interaction between three types of bees: Employed Bees, Onlooker Bees, and Scout Bees. Each food source represents a potential solution (job sequence), and the fitness value indicates the quality of that solution. The implementation of DABC on the HFS problem in a textile factory has led to a more optimal solution with a minimum makespan. We rigorously compare the performance of the DABC algorithm with that of the Migrating Birds Optimization (MBO) algorithm, which was previously employed in earlier studies. The comparison results, based on a comprehensive set of metrics, demonstrate the DABC algorithm's capability to provide solutions with a more optimal makespan than the MBO algorithm, thereby proving its effectiveness in solving the HFS problem.
![]() |
Text
S_MAT_2100165_Title.pdf Download (3MB) |
![]() |
Text
S_MAT_2100165_Chapter 1.pdf Download (108kB) |
![]() |
Text
S_MAT_2100165_Chapter 2.pdf Restricted to Staf Perpustakaan Download (405kB) |
![]() |
Text
S_MAT_2100165_Chapter 3.pdf Download (371kB) |
![]() |
Text
S_MAT_2100165_Chapter 4.pdf Restricted to Staf Perpustakaan Download (1MB) |
![]() |
Text
S_MAT_2100165_Chapter 5.pdf Download (86kB) |
![]() |
Text
S_MAT_2100165_Appendix.pdf Restricted to Staf Perpustakaan Download (187kB) |
Item Type: | Thesis (S1) |
---|---|
Additional Information: | ID SINTA Dosen Pembimbing: Khusnul Novianingsih: 258640 Imam Nugraha Albania: 6711447 |
Uncontrolled Keywords: | Penjadwalan, Makespan, Hybrid Flowshop Schedulling, Discrete Artificial Bee Colony Scheduling, Makespan, Hybrid Flowshop Scheduling, Discrete Artificial Bee Colony |
Subjects: | Q Science > Q Science (General) Q Science > QA Mathematics Q Science > QA Mathematics > QA76 Computer software |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Matematika - S1 > Program Studi Matematika (non kependidikan) |
Depositing User: | Hana Nabila Kansah |
Date Deposited: | 12 Aug 2025 09:30 |
Last Modified: | 12 Aug 2025 09:30 |
URI: | http://repository.upi.edu/id/eprint/135186 |
Actions (login required)
![]() |
View Item |