Ferdiansyah, - (2024) KOMPARASI LINEAR REGRESSION DAN POLYNOMIAL REGRESSION UNTUK PREDIKSI PRODUKSI DAGING SAPI : Studi Kasus Indonesia dan Provinsi Jawa Barat. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Produksi daging sapi merupakan komponen krusial dalam sektor peternakan, yang berpengaruh besar terhadap ketahanan pangan dan perekonomian, khususnya di Indonesia dan Provinsi Jawa Barat. Prediksi akurat terhadap produksi daging sapi menjadi sangat penting untuk perencanaan strategis guna memenuhi permintaan domestik dan menjaga stabilitas harga. Penelitian ini menggunakan algoritma Linear Regression dan Polynomial Regression untuk memprediksi produksi daging sapi di Indonesia dan Provinsi Jawa Barat. Evaluasi model dilakukan menggunakan metrik Mean Absolute Percentage Error (MAPE). Dalam memprediksi jumlah produksi daging sapi di Indonesia dan Jawa Barat, algoritma Linear Regression dan Polynomial Regression menunjukkan perbedaan dalam akurasi prediksi. Di Indonesia, Linear Regression memiliki nilai MAPE sebesar 9,7%, sementara Polynomial Regression Orde 2 menunjukkan nilai MAPE yang lebih rendah yaitu 7,6%, dan Polynomial Regression Orde 3 memiliki nilai MAPE 7,4%. Di Jawa Barat, Linear Regression mencatat nilai MAPE 5,8%, Polynomial Regression Orde 2 memiliki nilai MAPE yang lebih baik yaitu 4,0%, dan Polynomial Regression Orde 3 memiliki nilai MAPE 9,8%. Hasil ini menunjukkan bahwa Polynomial Regression Orde 3 secara umum memberikan prediksi yang lebih akurat di Indonesia, sementara Polynomial Regression Orde 2 unggul di Jawa Barat. Beef production is a crucial component of the livestock sector, significantly impacting food security and the economy, especially in Indonesia and West Java Province. Accurate predictions of beef production are vital for strategic planning to meet domestic demand and maintain price stability. This study employs Linear Regression and Polynomial Regression algorithms to predict beef production in Indonesia and West Java Province. The models are evaluated using the MAPE (Mean Absolute Percentage Error) metric. In predicting the amount of beef production in Indonesia and West Java, the Linear Regression and Polynomial Regression algorithms showed differences in prediction accuracy. In Indonesia, Linear Regression had a MAPE value of 9.7%, while Polynomial Regression of Order 2 showed a lower MAPE of 7.6%, and Polynomial Regression of Order 3 had a MAPE of 7.4%. In West Java, Linear Regression recorded a MAPE of 5.8%, Polynomial Regression of Order 2 had a better MAPE of 4.0%, and Polynomial Regression of Order 3 had a MAPE of 9.8%. These results indicate that Polynomial Regression of Order 3 generally provides more accurate predictions in Indonesia, while Polynomial Regression of Order 2 performs better in West Java.
![]() |
Text
S_KOM_1703924_Title.pdf Download (310kB) |
![]() |
Text
S_KOM_1703924_Chapter1.pdf Download (163kB) |
![]() |
Text
S_KOM_1703924_Chapter2.pdf Restricted to Staf Perpustakaan Download (409kB) |
![]() |
Text
S_KOM_1703924_Chapter3.pdf Download (279kB) |
![]() |
Text
S_KOM_1703924_Chapter4.pdf Restricted to Staf Perpustakaan Download (1MB) |
![]() |
Text
S_KOM_1703924_Chapter5.pdf Download (83kB) |
Item Type: | Thesis (S1) |
---|---|
Additional Information: | https://scholar.google.com/citations?hl=en&user=KpMuIgoAAAAJ&authuser=1&scilu=&scisig=ANI4uE0AAAAAZuFdFoyYb0UPb6xAAUhV3EM--Ck&gmla=AC6lMd8HPX7So4pOnwV3JgEIumjf3fQOgrp6Z9aLF2fgc64CJS9KReBrNYpxLanSbrsoqRkFuqq1vHopRobGzKhoqTstM5Q98wvkDW7UzhpB&sciund=2947005061688012933 ID SINTA Dosen Pembimbing: Muhamad Nursalman: 0029097906 Yaya Wihardi: 0025038901 |
Uncontrolled Keywords: | Linear Regression, MAPE, Polynomial Regression, Produksi Daging Sapi. Beef Production, Linear Regression, MAPE, Polynomial Regression. |
Subjects: | L Education > L Education (General) Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Ilmu Komputer |
Depositing User: | Ferdiansyah |
Date Deposited: | 13 Sep 2024 06:35 |
Last Modified: | 13 Sep 2024 06:35 |
URI: | http://repository.upi.edu/id/eprint/124315 |
Actions (login required)
![]() |
View Item |