Adzkia Azzahra, - (2024) PENYELESAIAN MASALAH FUZZY MAXIMUM FLOW DENGAN BILANGAN FUZZY SEGITIGA DAN TRAPESIUM. S1 thesis, Universitas Pendidikan Indonesia.
Text
S_MAT_2005221_Title.pdf Download (1MB) |
|
Text
S_MAT_2005221_Chapter1.pdf Download (418kB) |
|
Text
S_MAT_2005221_Chapter2.pdf Restricted to Staf Perpustakaan Download (526kB) | Request a copy |
|
Text
S_MAT_2005221_Chapter3.pdf Download (600kB) |
|
Text
S_MAT_2005221_Chapter4.pdf Restricted to Staf Perpustakaan Download (853kB) | Request a copy |
|
Text
S_MAT_2005221_Chapter5.pdf Download (297kB) |
|
Text
S_MAT_2005221_Appendix.pdf Restricted to Staf Perpustakaan Download (412kB) | Request a copy |
Abstract
Masalah Fuzzy Maximum Flow adalah masalah pencarian aliran maksimum pada jaringan berparameter fuzzy. Penelitian ini membahas penyelesaian masalah Fuzzy Maximum Flow dengan bilangan fuzzy segitiga dan trapesium. Masalah Fuzzy Maximum Flow dengan bilangan fuzzy segitiga diselesaikan dengan pendekatan program linier dengan cara mentransformasikan model Fuzzy Linear Programming menjadi Crisp Linear Programming, kemudian model diselesaikan menggunakan metode simpleks. Solusi yang diperoleh berupa Crisp Maximum Flow dan diubah kembali menjadi Fuzzy Maximum Flow dengan bilangan fuzzy segitiga. Masalah Fuzzy Maximum Flow dengan bilangan fuzzy trapesium diselesaikan dengan teknik pelabelan dengan cara mencari augmenting path atau jalur penerobos dari jaringan fuzzy. Hasil yang diperoleh membuktikan bahwa kedua metode mampu memberikan solusi optimal berupa aliran maksimum pada jaringan fuzzy. A Fuzzy Maximum Flow problem is a problem for finding the maximum flow in a network with fuzzy parameters. This research discusses on solving Fuzzy Maximum Flow problems using triangular and trapezoidal fuzzy number. The Fuzzy Maximum Flow problem with triangular fuzzy numbers is solved using a linear programming approach by transforming the Fuzzy Linear Programming model into a Crisp Linear Programming, then the model is solved using the Simplex Method. The solution obtained is in the form of Crisp Maximum Flow and is converted back into Fuzzy Maximum Flow form with triangular fuzzy numbers. The Fuzzy Maximum Flow problem with trapezoidal fuzzy numbers is solved using labeling techniques by finding augmenting paths or breakthrough paths from the fuzzy network. The results show that both methods are able to provide optimal solutions asmaximum flow in the fuzzy network.
Item Type: | Thesis (S1) |
---|---|
Additional Information: | https://scholar.google.com/citations?hl=en&authuser=1&user=B0tcoTsAAAAJ ID SINTA Dosen Pembimbing: Khusnul Novianingsih: 258640 Ririn Sispiyati: 5986406 |
Uncontrolled Keywords: | Fuzzy Maximum Flow, bilangan fuzzy segitiga, bilangan fuzzy trapesium. Fuzzy Maximum Flow, triangular fuzzy numbers, trapezoidal fuzzy numbers. |
Subjects: | Q Science > QA Mathematics |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Matematika (non kependidikan) |
Depositing User: | Adzkia Azzahra |
Date Deposited: | 02 Sep 2024 09:42 |
Last Modified: | 02 Sep 2024 09:42 |
URI: | http://repository.upi.edu/id/eprint/121533 |
Actions (login required)
View Item |