ROSTIKA NURLAELA NOVA MAYA SOFA, - (2024) LEARNING OBSTACLE SISWA DALAM MENYELESAIKAN MASALAH KONEKSI MATEMATIS PADA MATERI SISTEM PERTIDAKSAMAAN LINEAR DUA VARIABEL. S2 thesis, Universitas Pendidikan Indonesia.
Text
T_MTK_2105118_TITLE.pdf Download (412kB) |
|
Text
T_MTK_2105118_CHAPTER1.pdf Download (93kB) |
|
Text
T_MTK_2105118_CHAPTER2.pdf Restricted to Staf Perpustakaan Download (324kB) |
|
Text
T_MTK_2105118_CHAPTER3.pdf Download (182kB) |
|
Text
T_MTK_2105118_CHAPTER4.pdf Restricted to Staf Perpustakaan Download (1MB) |
|
Text
T_MTK_2105118_CHAPTER5.pdf Download (82kB) |
|
Text
T_MTK_2105118_APPENDIX.pdf Restricted to Staf Perpustakaan Download (1MB) |
Abstract
Kemampuan koneksi matematis merupakan salah satu kemampuan yang harus dimiliki siswa berdasarkan Kurikulum Merdeka. Meski kemampuan koneksi matematis diperlukan, namun faktanya terjadi kesenjangan di antara kemampuan koneksi matematis secara ideal dan kemampuan koneksi matematis di lapangan. Faktanya, kemampuan koneksi matematis siswa materi Sistem Pertidaksamaan Linear Dua Variabel pada kategori rendah padahal siswa yang memiliki kemampuan koneksi matematis tinggi akan memiliki pemahaman mendalam dan motivasi belajar yang tinggi. Rendahnya kemampun koneksi menunjukkan siswa mengalami learning obstacle. Kajian tentang learning obstacle terkait dengan kemampuan koneksi matematis ini dapat dijadikan dasar dalam merancang sebuah hypothetical learning trajectory sebagai pedoman prediksi alur proses pembelajaran, salah satunya untuk materi Sistem Pertidaksamaan Linear Dua Variabel sehingga diharapkan dapat turut memperbaiki proses dan hasil belajar siswa. Penelitian ini bertujuan untuk mendeskripsikan secara komprehensif mengenai learning obstacle siswa dalam menyelesaikan masalah koneksi matematis pada materi Sistem Pertidaksamaan Linear Dua Variabel. Penelitian ini menggunakan pendekatan kualitatif jenis didactical design research. Subjek dalam penelitian ini adalah siswa kelas XII pada salah satu SMA Swasta di Kota Tasikmalaya, Provinsi Jawa Barat. Berdasarkan hasil tes, observasi, wawancara, dan studi dokumen dapat disimpulkan bahwa siswa belum mampu mengenali dan menggunakan hubungan antar ide-ide matematis, memahami bagaimana ide-ide matematis saling berhubungan dan membangun satu sama lain untuk menghasilkan kesatuan yang utuh, dan mengenali dan mengaplikasikan matematika ke dalam konteks di luar matematika pada materi Sistem Pertidaksamaan Linear Dua Variabel. Lalu, learning obstacle ditelusuri dan diklasifikasi menjadi ontogenical obstacle, epistemological obstacle, dan didactical obstacle. Learning obstacle ini menjadi landasan dalam membuat hypothetical learning trajectory sebagai pedoman alur proses pembelajaran untuk mengembangkan kemampuan koneksi matematis siswa. The mathematical connection ability is one of the skills students should possess according to the Merdeka Curriculum. Despite the necessity of mathematical connection ability, there exists a gap between the ideal and actual mathematical connection abilities in the field. In fact, students' mathematical connection abilities in the topic of System of Two Variabels Linear Inequalities are low, whereas those with high mathematical connection abilities tend to have a deep understanding and high learning motivation. The low connection ability indicates that students are experiencing a learning obstacle. Exploring learning obstacles related to mathematical connection ability can serve as a foundation for designing a hypothetical learning trajectory as a guide for predicting the flow of the learning process, particularly for topics like the System of Two Variabels Linear Inequalities, aiming to improve students' learning processes and outcomes. This research aims to comprehensively describe learning obstacles faced by students in solving mathematical connection problems within the topic of the System of Two Variabels Linear Inequalities. This research used a qualitative approach known as didactical design research. The subjects of this study are 12th-grade students in a private high school in Tasikmalaya City, West Java Province. Based on test results, observations, interviews, and document studies, it can be concluded that students struggle to recognize and apply relationships between mathematical ideas, understand how these ideas are interconnected and build upon each other to form a coherent whole, and recognize and apply mathematics in non-mathematical contexts within the System of Linear Inequalities with Two Variables. Furthermore, learning obstacles were identified and classified into ontogenical obstacles, epistemological obstacles, and didactical obstacles. These learning obstacles serve as a foundation for developing a hypothetical learning trajectory, which serves as a guide for the sequential process of teaching to enhance students' mathematical connection abilities.
Item Type: | Thesis (S2) |
---|---|
Additional Information: | https://scholar.google.com/citations?view_op=list_works&hl=en&user=lHc3M2oAAAAJ ID SINTA Dosen Pembimbing Sufyani Prabawanto : 5995121 Suhendra : 6140435 |
Uncontrolled Keywords: | Kemampuan Koneksi Matematis, Learning Obstacle, Sistem Pertidaksamaan Linear Dua Variabel, Hypothetical Learning Trajectory Mathematical Connection Ability, System of Two Linear Variabel Inequalities, Learning Obstacles, Hypothetical Learning Trajectory |
Subjects: | L Education > L Education (General) L Education > LB Theory and practice of education > LB1603 Secondary Education. High schools Q Science > QA Mathematics |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Pendidikan Matematika |
Depositing User: | ROSTIKA NURLAELA NOVA MAYA SOFA |
Date Deposited: | 15 Jan 2024 02:41 |
Last Modified: | 15 Jan 2024 02:41 |
URI: | http://repository.upi.edu/id/eprint/114348 |
Actions (login required)
View Item |