PERAMALAN HARGA SAHAM SYARIAH DENGAN MENGGUNAKAN HYBRID CONVOLUTIONAL NEURAL NETWORK – LONG SHORT TERM MEMORY

Wanda Alifia, - (2022) PERAMALAN HARGA SAHAM SYARIAH DENGAN MENGGUNAKAN HYBRID CONVOLUTIONAL NEURAL NETWORK – LONG SHORT TERM MEMORY. S1 thesis, Universitas Pendidikan Indonesia.

[img] Text
S_MAT_1804316_Title.pdf

Download (359kB)
[img] Text
S_MAT_1804316_Chapter1.pdf

Download (225kB)
[img] Text
S_MAT_1804316_Chapter2.pdf
Restricted to Staf Perpustakaan

Download (482kB)
[img] Text
S_MAT_1804316_Chapter3.pdf

Download (304kB)
[img] Text
S_MAT_1804316_Chapter4.pdf
Restricted to Staf Perpustakaan

Download (731kB)
[img] Text
S_MAT_1804316_Chapter5.pdf

Download (103kB)
[img] Text
S_MAT_1804316_Appendix.pdf
Restricted to Staf Perpustakaan

Download (1MB)
Official URL: http://repository.upi.edu/

Abstract

Saham merupakan salah satu alat investasi yang saat ini menarik banyak perhatian dari masyarakat. Saham dapat memberikan keuntungan yang tinggi, namun dapat pula menimbulkan kerugian besar dalam waktu yang singkat karena sifatnya yang fluktuatif. Pergerakan nilai saham dipengaruhi oleh beberapa faktor, salah satunya dipengaruhi oleh nilai historis dari saham tersebut. Oleh karena itu, peramalan harga saham sudah banyak dilakukan dan menjadi penelitian yang penting karena dapat dijadikan bahan pertimbangan investor dalam melakukan investasi saham. Beberapa model telah diterapkan untuk dapat meramalkan fluktuasi harga saham, namun jika hanya menggunakan sebuah model tunggal, model tersebut tentunya memiliki keterbatasan. Sehingga pada penelitian ini, dibangun model hybrid Convolutional Neural Network (CNN) – Long Short Term Memory (LSTM) dengan cara menggabungkan algoritma terbaik untuk dapat memanfaatkan kelebihan yang dimiliki oleh masing-masing algoritma. Hasil penelitian menunjukkan bahwa model hybrid CNN-LSTM menghasilkan tingkat akurasi yang baik dalam peramalan harga saham. Kata kunci: Saham, investasi saham, Convolutional Neural Network, Long Short Term Memory, hybrid CNN-LSTM Currently, stocks have attracted much attention among the public as a means of investment. Although stocks can offer high returns, they may also result in large losses in a short period of time due to its volatility. Stock value movements are influenced by several factors, including the historical value of the stock. Therefore, stock market forecasting is widely practiced and becomes an important area of research as it can be a consideration for investors in making stock investments. A number of models have been applied to predict stock price fluctuations, but when using only a single model, the model certainly has limitations. Therefore, in this study, a hybrid Convolutional Neural Network (CNN) – Long-Short Term Memory (LSTM) model was developed by combining the best algorithms to maximize the advantages of each algorithm. The results show that the CNN-LSTM hybrid model yields a high accuracy level in stock price forecasting. Keyword: Stocks, stock investment, Convolutional Neural Network, Long�Short Term Memory, hybrid CNN-LSTM.

Item Type: Thesis (S1)
Additional Information: ID Sinta Dosen Pembimbing 1 : Dewi Rachmatin, S.Si., M.Si. (5975775) ID Sinta Dosen Pembimbing 2 : Fitriani Agustina, S.Si., M.Si. (5981275)
Uncontrolled Keywords: Saham, investasi saham, Convolutional Neural Network, Long Short Term Memory, hybrid CNN-LSTM
Subjects: L Education > L Education (General)
Q Science > QA Mathematics
Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Matematika (non kependidikan)
Depositing User: Wanda Alifia
Date Deposited: 15 Nov 2022 07:55
Last Modified: 15 Nov 2022 07:55
URI: http://repository.upi.edu/id/eprint/82692

Actions (login required)

View Item View Item