Alvin Dzaki Pratama Darmawan, - and Arjuni Budi Pantjawati, - and Aip Saripudin, - (2025) LANDSLIDE PREDICTION DATA PROCESSING USING LOGISTIC REGRESSION ALGORITHM. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Landslides pose a significant threat to life and property. This research aims to develop a machine-learning model to predict landslide occurrences, focusing on logistic regression. Key factors such as inclination, vibration, humidity, and precipitation thresholds are considered to categorize areas into risk levels: safe, warning, alert, and danger. To address the challenges of real world data acquisition, a simulated environment was employed to generate a comprehensive dataset. The developed model achieved an accuracy of 84% on the validation dataset, demonstrating its potential for accurate landslide prediction. This research contributes to the advancement of early warning systems and risk mitigation strategies for landslide-prone areas.
|
Text
TA_ART_S_TE_2140188_SK.pdf Download (118kB) |
|
|
Text
TA_ART_S_TE_2104188_ART.pdf Restricted to Staf Perpustakaan Download (1MB) |
| Item Type: | Thesis (S1) |
|---|---|
| Additional Information: | SINTA ID DOSEN PEMBIMBING Arjuni Budi Pantjawati: 5994602 Aip Saripudin: 6002410 Karya ini adalah tugas akhir setara dengan skripsi sesuai dengan SK Dekan Fakultas Pendidikan Teknik dan Industri Nomor: 6891/UN40.A5/PK.03.03/2025 |
| Uncontrolled Keywords: | Vibrations, Seminars, Landslides, Logistic regression, Accuracy, Machine learning, Humidity, Predictive models, Terrain factors, Sensor systems |
| Subjects: | Q Science > Q Science (General) Q Science > QE Geology T Technology > TK Electrical engineering. Electronics Nuclear engineering |
| Divisions: | Fakultas Pendidikan Teknik dan Industri > Jurusan Pendidikan Teknik Elektro |
| Depositing User: | Alvin Dzaki Pratama Darmawan |
| Date Deposited: | 21 Oct 2025 09:38 |
| Last Modified: | 21 Oct 2025 09:38 |
| URI: | http://repository.upi.edu/id/eprint/143773 |
Actions (login required)
![]() |
View Item |
