KELAS-KELAS RING DAN IMPLIKASINYA SERTA MODUL SEMI-KOMUTATIF DAN P.Q-BAER

Yonathan, Barry (2013) KELAS-KELAS RING DAN IMPLIKASINYA SERTA MODUL SEMI-KOMUTATIF DAN P.Q-BAER. S1 thesis, Universitas Pendidikan Indonesia.

[img]
Preview
Text
S_MTK_0808542_TITLE.pdf

Download (191kB) | Preview
[img]
Preview
Text
S_MTK_0808542_ABSTRACT.pdf

Download (319kB) | Preview
[img]
Preview
Text
S_MTK_0808542_TABLE OF CONTENT.pdf

Download (177kB) | Preview
[img]
Preview
Text
S_MTK_0808542_CHAPTER1.pdf

Download (403kB) | Preview
[img] Text
S_MTK_0808542_CHAPTER2.pdf
Restricted to Staf Perpustakaan

Download (564kB)
[img]
Preview
Text
S_MTK_0808542_CHAPTER3.pdf

Download (575kB) | Preview
[img] Text
S_MTK_0808542_CHAPTER4.pdf
Restricted to Staf Perpustakaan

Download (790kB)
[img]
Preview
Text
S_MTK_0808542_CHAPTER5.pdf

Download (316kB) | Preview
[img]
Preview
Text
S_MTK_0808542_BIBLIOGRAPHY.pdf

Download (400kB) | Preview

Abstract

Suatu ring R disebut ring terreduksi jika a^2=0 mengakibatkan a=0 untuk setiap a∈R, suatu ring R disebut ring McCoy jika untuk setiap polinom tak nol f(x)=a_0+a_1 x+⋯+a_n x^n, dan g(x)=b_0+b_1 x+⋯+b_m x^m∈R[x], sedemikian sehingga f(x)g(x)=0, maka terdapat r,s≠0∈R, sedemikian sehingga f(x)r=0 dan s(g(x))=0. Suatu ring R disebut ring 2-primal jika berlaku P(R)=N(R). Kelas dari ketiga ring tersebut beserta kelas ring simetrik, kelas ring reversibel, kelas ring semi-komutatif, kelas ring abelian, dan kelas ring Dedekind finite, kelas ring Armendariz, dan kelas ring duo memiliki suatu hubungan implikasi yang secara keseluruhan dapat dinyatakan dalam suatu diagram. Suatu modul M atas ring R disebut modul semi-komutatif, jika untuk setiap a∈R, dan m∈M, sedemikian sehingga ma=0, maka mRa=0, dan suatu modul M atas ring R disebut modul P.Q-Baer jika untuk setiap m∈M, berlaku A(mR)=eR, untuk suatu idempoten e. Kata kunci: ring terreduksi, ring McCoy, ring 2-primal, modul semi-komutatif, dan modul P.Q-Baer.   A ring R is said to be reduced if a^2=0 implies a=0 for every a∈R, a ring R is said to be McCoy if for every non-zero polynomial f(x)=a_0+a_1 x+⋯+a_n x^n, and g(x)=b_0+b_1 x+⋯+b_m x^m∈R[x] such that f(x)g(x)=0, then there exist r,s≠0∈R, such that f(x)r=0 and s(g(x))=0. A ring R is called 2-primal if N(R)=P(R). Each class of those rings with the classes of symmetric, reversible, semi-commutative, abelian, Dedekind finite, Armendariz, and duo rings may have some implicative relations which can be drawn as an implication chart. A module M over ring R is said to be semi-commutative if ma=0 implies mRa=0, for all m∈M and a∈R. A module M over ring R is said to be P.Q-Baer if A(mR)=eR, for all m∈M, and some idempoten e. Keywords: reduced ring, McCoty ring, 2-primal ring, semi-commutative module, P.Q-Baer module.

Item Type: Thesis (S1)
Subjects: Universitas Pendidikan Indonesia > Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Pendidikan Matematika
Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Matematika > Program Studi Pendidikan Matematika
Depositing User: Riki N Library ICT
Date Deposited: 27 Aug 2013 07:27
Last Modified: 27 Aug 2013 07:27
URI: http://repository.upi.edu/id/eprint/405

Actions (login required)

View Item View Item