KEMAMPUAN ABSTRAKSI MATEMATIS SISWA SMA DITINJAU DARI GAYA KOGNITIF

Anna Rachmadyana Harry, - (2019) KEMAMPUAN ABSTRAKSI MATEMATIS SISWA SMA DITINJAU DARI GAYA KOGNITIF. S2 thesis, Universitas Pendidikan Indonesia.

[img] Text
T_MTK_1706334_Title.pdf

Download (915kB)
[img] Text
T_MTK_1706334_Chapter1.pdf

Download (239kB)
[img] Text
T_MTK_1706334_Chapter2.pdf
Restricted to Staf Perpustakaan

Download (326kB) | Request a copy
[img] Text
T_MTK_1706334_Chapter3.pdf

Download (341kB)
[img] Text
T_MTK_1706334_Chapter4.pdf
Restricted to Staf Perpustakaan

Download (1MB) | Request a copy
[img] Text
T_MTK_1706334_Chapter5.pdf

Download (158kB)
[img] Text
T_MTK_1706334_Appendix.pdf
Restricted to Staf Perpustakaan

Download (7MB) | Request a copy
Official URL: http://repository.upi.edu

Abstract

Tujuan penelitian yang dilaksanakan adalah mendeskripsiskan klasifikasi level kemampuan abstraksi matematis pada materi barisan dan deret ditinjau dari gaya kognitif yang dimiliki siswa, menelaah keterkaitan antara level abstraksi matematis dengan gaya kognitif siswa, dan mengetahui kesalahan yang dialami siswa dalam menyelesaikan soal tes kemampuan abstraksi matematis pada materi barisan dan deret ditinjau dari gaya kognitif. Penelitian ini merupakan penelitian deskriptif dengan menggunakan pendekatan kualitatif. Subjek penelitian ini diperoleh dengan melaksanakan tes gaya kognitif menggunakan instrumen MFFT (Matching Familiar Figures Test) yang dikembangkan oleh Warli 2010 dan soal tes kemampuan abstraksi matematis yang disusun berdasarkan level dan indikator abstraksi matematis yang dikembangkan oleh Fitriani (2018) yang diikuti oleh 31 siswa kelas XI salah satu Sekolah Menengah Atas di Kota Bandung. Hasil tes gaya kognitif MFFT mengelompokkan siswa menjadi 4 kelompok gaya kognitif yaitu impulsif (I), reflektif (R), impulsif dan reflektif (IR), serta tidak impulsif dan tidak reflektif (TITR). Kemampuan abstraksi matematis dibagi menjadi 4 level yaitu level 1 perceptual abstraction, level 2 internalization, level 3 interiorization, dan level 4 second level of interiorization. Hasil tes kemampuan abstraksi matematis siswa menunjukkan siswa I berada pada level 1 transisi, level 2 lengkap, level 3 transisi, dan level 4 transisi, serta berada pada level lengkap pada soal 5. Siswa R berada pada level lengkap untuk soal level 1, level transisi untuk soal level 2, level lengkap untuk level 3 dan level transisi untuk level 4, serta mencapai level lengkap untuk soal 5. Siswa IR berada pada level lengkap untuk seluruh level 1 hingga level 4 serta soal nomor 5. Siswa TITR berada pada level 1 lengkap, level 2 transisi, level 3 lengkap, level 4 transisi, dan tidak mendapat pencapaian soal 5. Keterkaitan yang ditemukan antara level abstraksi matematis dengan gaya kognitif IR. Beberapa jenis kesalahan ditemukan saat siswa menyelesaikan soal abstraksi matematis diantaranya kategori kesalahan CE (Comprehension Error), TE (Transformation Error), PSE (Process Skill Error), dan EE (Econding Error). Kata Kunci: abstraksi matematis, barisan dan deret, gaya kognitif, kesalahan siswa, teori Newman The purpose of the research carried out is to describe the classification of the level of mathematical abstraction ability in the material sequence and series in terms of the cognitive style of the students, examine the relationship between mathematical level abstractions and students' cognitive styles, and find out the errors experienced by students in completing questions about mathematical abstraction ability in the sequence and series material in terms of cognitive style. This research is a descriptive study using a qualitative approach. The subject of this study was obtained by carrying out cognitive style tests using instruments MFFT (Matching Familiar Figures Test) developed by Warli (2010) and the test questions of mathematical abstraction abilities are arranged based on levels and indicators of mathematical abstraction developed by Fitriani (2018) which was attended by 31 grade XI students from one of the high schools in Bandung city. The MFFT cognitive style test results group students into 4 cognitive style groups, namely impulsive (I), reflective (R), impulsive and reflective (IR), and not impulsive and not reflective (TITR). Mathematical abstraction abilities are divided into 4 levels, level 1 perceptual abstraction, level 2 internalization, level 3 interiorization, and level 4 second level of interiorization. The results of the students' mathematical abstraction ability test show that student I is at level 1 transition, level 2 complete, level 3 transitions, and level 4 transitions, and complete level in question 5. Student R is at complete level for level 1 questions, transition level for level 2 questions, complete level for level 3 and transition level for level 4, and complete level for question 5. Students IR are at the complete level for all levels 1 to level 4 and questions number 5. TITR students are at level 1 complete, level 2 transitions, complete level 3, level 4 transitions, and do not get the achievement of question 5. Linkages were found between the level of mathematical abstraction and the cognitive style of IR. Several types of errors are found when students solve mathematical abstraction questions including the category of error CE (Comprehension Error), TE (Transformation Error), PSE (Process Skill Error), and EE (Econding Error). Kata Kunci: mathematical abstraction, sequences and series, cognitive style, student mistakes, Newman's theory

Item Type: Thesis (S2)
Additional Information: No. Panggil: T MTK ANN k-2019 ; Pembimbing: I. Endang Cahya, II. Al Jupri ; NIM: 1706334
Uncontrolled Keywords: abstraksi matematis, barisan dan deret, gaya kognitif, kesalahan siswa, teori Newman
Subjects: L Education > L Education (General)
L Education > LB Theory and practice of education
L Education > LB Theory and practice of education > LB1603 Secondary Education. High schools
Divisions: Sekolah Pasca Sarjana > Pendidikan Matematika S-2
Depositing User: Anna Rachmadyana Harry
Date Deposited: 09 Dec 2019 04:03
Last Modified: 09 Dec 2019 04:03
URI: http://repository.upi.edu/id/eprint/38397

Actions (login required)

View Item View Item