PENERAPAN METODE WEIGTHED LEAST SQUARE UNTUK MENGATASI HETEROSKEDASTISITAS PADA ANALISIS REGRESI LINEAR

    Hanifah, Nurul (2016) PENERAPAN METODE WEIGTHED LEAST SQUARE UNTUK MENGATASI HETEROSKEDASTISITAS PADA ANALISIS REGRESI LINEAR. S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Analisis regresi merupakan analisis statistik yang mempalajari bagaimana memodelkan regresi linear. Jika model regresi linear memenuhi uji asumsi klasik dengan metode OLS maka mempunyai sifat BLUE (Beast Linear Unbiased Estimator). Uji heteroskedastisitas,yaitu varian error pada setiap nilai variabel bebas bernilai tidak konstan. Akibat dari heteroskedastisitas yaitu nilai parameter yang diperoleh tetap tidak bias tetapi varian penaksir yang diperoleh menjadi tidak efisien, artinya uji hipotesis yang dilakukan tidak akan memberikan hasil yang baik (tidak valid) atau prediksi koefisien-koefisien populasinya akan keliru. Oleh karena itu untuk mengetahui apakah terdapat heteroskedastisitas dilakukan uji White. Karena terdapat heteroskedastisitas pada skripsi ini, maka harus dilakukan transformasi dengan metode kuadrat trkecil tertimbang (Weighted Least Square).
    Kata Kunci: Uji Asumsi Klasik, Weighted least Square, Uji White.
    Regression analysis is a statistical analysis that learn how to model linear regression. If a linear regression model meets the Classic Assumption Test by OLS method, it has the nature of BLUE (Best Linear Unbiased Estimator). Error variance at each independent variable value is not constant.
    It means that heteroskedasticity test is unfulfilled and the classical assumption is not met.The result of heteroskedastisitas is that the parameter value remains biased but variance estimator becomes inefficient. It means thata hypothesis test
    wouldn’t give good results (not valid) or predictions coefficients of the population would be mislead. Therefore, to know whether there are heteroskedasticity, White test is conducted. Because heteroskedasticity exists in this thesis, transformation with weighted least squares method (Weighted Least Square) must be carried out.

    Keyword: Classic Assumption Test, Weighted least Square, White Test.

    [thumbnail of S_MAT_1000057_Title.pdf]
    Preview
    Text
    S_MAT_1000057_Title.pdf

    Download (378kB) | Preview
    [thumbnail of S_MAT_1000057_Abstract.pdf]
    Preview
    Text
    S_MAT_1000057_Abstract.pdf

    Download (276kB) | Preview
    [thumbnail of S_MAT_1000057_Table_of_content.pdf]
    Preview
    Text
    S_MAT_1000057_Table_of_content.pdf

    Download (150kB) | Preview
    [thumbnail of S_MAT_1000057_Chapter1.pdf]
    Preview
    Text
    S_MAT_1000057_Chapter1.pdf

    Download (390kB) | Preview
    [thumbnail of S_MAT_1000057_Chapter2.pdf] Text
    S_MAT_1000057_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    [thumbnail of S_MAT_1000057_Chapter3.pdf]
    Preview
    Text
    S_MAT_1000057_Chapter3.pdf

    Download (602kB) | Preview
    [thumbnail of S_MAT_1000057_Chapter4.pdf] Text
    S_MAT_1000057_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (596kB)
    [thumbnail of S_MAT_1000057_Chapter5.pdf]
    Preview
    Text
    S_MAT_1000057_Chapter5.pdf

    Download (384kB) | Preview
    [thumbnail of S_MAT_1000057_Bibliography.pdf]
    Preview
    Text
    S_MAT_1000057_Bibliography.pdf

    Download (361kB) | Preview
    [thumbnail of S_MAT_1000057_Appendix.pdf] Text
    S_MAT_1000057_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (498kB)
    Official URL: http://repository.upi.edu
    Item Type: Thesis (S1)
    Additional Information: No. Panggil: S_MAT_HAN p-2016; Pembimbing : I. Nar Herrhyanto, II. Fitriani Agustina
    Uncontrolled Keywords: Uji Asumsi Klasik, Weighted least Square, Uji White.
    Subjects: L Education > L Education (General)
    Q Science > QA Mathematics
    Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Matematika - S1
    Depositing User: Mr. Cahya Mulyana
    Date Deposited: 10 Apr 2017 08:56
    Last Modified: 10 Apr 2017 08:56
    URI: http://repository.upi.edu/id/eprint/23344

    Actions (login required)

    View Item View Item