DESAIN DIDAKTIS PADA MATERI TURUNAN FUNGSI BERDASARKAN SKEMA ARGUMENTASI TOULMIN DI SEKOLAH MENENGAH ATAS

    Putri Haryani Syahar, - and Sufyani Prabawanto, - and Lukman, - (2025) DESAIN DIDAKTIS PADA MATERI TURUNAN FUNGSI BERDASARKAN SKEMA ARGUMENTASI TOULMIN DI SEKOLAH MENENGAH ATAS. S2 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Turunan fungsi sebagai salah satu elemen kalkulus pada fase F dalam kurikulum merdeka yang tidak hanya berperan sebagai mata pelajaran, tetapi juga sebagai landasan penting dalam pengembangan kompetensi kompleks melalui pemodelan situasi nyata dan penerapan studi lanjut. Siswa didorong untuk mengembangkan keterampilan berpikir tingkat tinggi melalui diskusi dengan membangun argumen secara sistematis dan menyusun bukti logis dengan didukung pernyataan yang benar. Penelitian ini bertujuan untuk menghasilkan desain didaktis pada materi turunan fungsi berdasarkan Skema Argumentasi Toulmin. Desain penelitian yang digunakan adalah Didactical Design Research (DDR) dengan pendekatan kualitatif yang memuat paradigma interpretif dan paradigma kritis yang berfokus pada analisis prospektif. Paradigma intepretif memuat kajian potensi hambatan belajar siswa dari berbagai intervensi pembelajaran seperti buku ajar, bahan ajar yang dibuat oleh guru, dan praktik ajar guru di kelas serta hambatan belajar yang peneliti temui di lapangan. Paradigma kritis memuat Hypothetical Learning Trajectory (HLT) dan desain didaktis rekomendasi. Penelitian ini terdapat 32 partisipan yang merupakan siswa kelas XII SMA dan guru matematika minat. Pengumpulan data penelitian ini dilakukan melalui observasi, studi dokomentasi, hasil tes dan wawancara. Hasil penelitian menunjukkan bahwa: (1) terdapat distorsi makna pada definisi turunan fungsi dari scholary knowledge menuju knowledge to be taught dan taught knowledge sehingga terjadinya gap pengetahuan yang dapat menyebabkan potensi hambatan belajar; (2) hambatan epistemologis yang diidentifikasi yaitu persempitan definisi yang menyebabkan siswa kehilangan makna dari turunan fungsi, sedangkan hambatan ontologis yaitu minimnya kapasitas yang siswa miliki untuk memahami turunan fungsi dikarenakan terbiasa pada aktivitas prosedural. Selanjutnya, hambatan didaktis diperoleh dari cara siswa memperoleh pengetahuan, yaitu restraksi pada konsep turunan fungsi pada buku teks dan bahan ajar serta eksplorasi soal terkait definisi turunan fungsi yang masih terbatas; (3) HLT dirancang berdasarkan hambatan belajar; repersonalisasi dan rekontekstualisasi pada turunan fungsi; (4) desain didaktis rekomendasi materi turunan fungsi disusun berdasarkan kajian learning obstacle siswa dan HLT. Dengan demikian, desain didaktis yang direkomendasikan ini dapat dijadikan sebagai alternatif desain pembelajaran dalam melaksanakan pembelajaran turunan fungsi di tingkat SMA dan sederajatnya. Derivatives of fuctions are one of the elements of calculus in phase F of the independent curriculum, which not only serves as a subject but also as an important foundation in the development of complex competencies through modeling real situations and applying further studies. Students are encouraged to develop higher-order thinking skills through discussions by systematically constructing arguments and compiling evidence supported by the logistics of correct statements. This study aims to produce a didactic design for the material on function derivatives based on the Toulmin Argumentation Scheme. The method in this study is qualitative with a hemenetic phenomenological approach. The research design used is Didactic Design Research (DDR) which includes an interpretive paradigm and a critical paradigm that focuses on prospective analysis. The interpretive paradigm includes a study of potential obstacles to student learning from various learning interventions such as textbooks, teaching materials created by teachers, and teacher teaching practices in the classroom as well as learning obstacles that researchers encounter in the field. The critical paradigm includes a Hypothetical Learning Trajectory (HLT) and a recommended didactic design. This study involved 32 participants who were grade XII high school students and a mathematics interest teacher. Data collection for this study was conducted through observation, documentation studies, test results and interviews. The results of the study indicate that: (1) there is a distortion of meaning in the definition of the derivative of a function from science to the science being taught and the science being taught so that a knowledge gap occurs which can cause potential learning obstacles; (2) epistemological obstacles are the narrowing of definitions that cause students to lose the meaning of the derivative of a function, while ontological obstacles are the lack of capacity that students have to understand the derivative of a function because they are accustomed to procedural activities. Furthermore, didactic challenges are obtained from the way students acquire knowledge, namely retraction to the concept of the derivative of a function in textbooks and teaching materials and exploration of questions related to the definition of the derivative of a function which is still limited; (3) HLT is designed based on learning obstacles; repersonalization and recontextualization; (4) The recommended didactic design for the material on derivative functions is based on learning obstacle and HLT. Therefore, this recommended didactical design can be used as an alternative learning design in implementing learning on derivative functions at the high school level and equivalent.

    [thumbnail of T_MTK_2310280_Title.pdf] Text
    T_MTK_2310280_Title.pdf

    Download (746kB)
    [thumbnail of T_MTK_2310280_Chapter1.pdf] Text
    T_MTK_2310280_Chapter1.pdf

    Download (570kB)
    [thumbnail of T_MTK_2310280_Chapter2.pdf] Text
    T_MTK_2310280_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (631kB)
    [thumbnail of T_MTK_2310280_Chapter3.pdf] Text
    T_MTK_2310280_Chapter3.pdf

    Download (425kB)
    [thumbnail of T_MTK_2310280_Chapter4.pdf] Text
    T_MTK_2310280_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (2MB)
    [thumbnail of T_MTK_2310280_Chapter5.pdf] Text
    T_MTK_2310280_Chapter5.pdf
    Restricted to Staf Perpustakaan

    Download (478kB)
    [thumbnail of T_MTK_2310280_Chapter6.pdf] Text
    T_MTK_2310280_Chapter6.pdf

    Download (393kB)
    [thumbnail of T_MTK_2310280_Appendix.pdf] Text
    T_MTK_2310280_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (13MB)
    Official URL: https://repository.upi.edu/
    Item Type: Thesis (S2)
    Additional Information: https://scholar.google.com/citations?user=Wb8dl00AAAAJ&hl=id&oi=ao ID SINTA Dosen Pembimbing Sufyani Prabawanto : 5995121 Lukman : 6675529
    Uncontrolled Keywords: Desain Didaktis, Turunan Fungsi, Hambatan Belajar, Skema Argumentasi Toulmin Didactical design, Derivatives, Learning Obstacle, Toulmin Argumentation Scheme
    Subjects: L Education > L Education (General)
    L Education > LB Theory and practice of education
    L Education > LB Theory and practice of education > LB1603 Secondary Education. High schools
    Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Pendidikan Matematika - S2
    Depositing User: Putri Haryani Syahar
    Date Deposited: 08 Sep 2025 02:24
    Last Modified: 08 Sep 2025 02:24
    URI: http://repository.upi.edu/id/eprint/137515

    Actions (login required)

    View Item View Item