Gita Rani Putri Mangiri, - and Sufyani Prabawanto, - and Al Jupri, - (2025) KETERAMPILAN BERPIKIR KOMPUTASI PESERTA DIDIK MELALUI PENERAPAN DESAIN DIDAKTIS PADA MATERI BARISAN DAN DERET ARITMATIKA. S2 thesis, Universitas Pendidikan Indonesia.
Abstract
Keterampilan berpikir komputasi merupakan keterampilan esensial abad ke-21 yang perlu dilatih dalam pembelajaran matematika. Penelitian ini bertujuan merancang hypothetical learning trajectory (HLT) dan desain didaktis pada materi barisan dan deret aritmatika untuk mengasah keterampilan berpikir komputasional peserta didik kelas X SMA. Pendekatan yang digunakan adalah kualitatif dengan metode fenomenologi hermeneutik dalam kerangka Didactical Design Research (DDR) yang mencakup tiga tahap: analisis prospektif (perancangan desain), analisis metapedadidaktik (implementasi desain), dan analisis retrospektif (refleksi dan evaluasi desain). Partisipan penelitian terdiri atas 9 peserta didik kelas XI dan seorang guru matematika (untuk identifikasi learning obstacle), serta 33 peserta didik kelas X (untuk implementasi desain). Pengumpulan data dilakukan melalui studi dokumentasi, observasi, wawancara, tes, dan rekaman audio. Hasil penelitian menunjukkan: (1) terdapat tiga jenis learning obstacle yang teridentifikasi, yakni ontogenic obstacle (kesulitan memahami makna simbol yang digunakan), didactical obstacle (sajian materi pembelajaran kurang mencakup variasi konteks), dan epistemological obstacle (kesalahan dalam menentukan nilai n, pola dan penerapan rumus); (2) HLT disusun untuk mengakomodasi alur berpikir peserta didik dari pengertian barisan aritmatika, rumus suku ke-n, penerapan konsep barisan aritmatika, rumus deret aritmatika, dan penerapan konsep deret aritmatika melalui pemanfaatan keterampilan berpikir komputasi; (3) desain didaktis hipotesis materi barisan dan deret aritmatika dirancang berdasarkan Theory of Didactical Situation yang mencakup empat situasi: aksi, formulasi, validasi, dan institusionalisasi; (4) implementasi desain didaktis hipotesis memperlihatkan bahwa seluruh rangkaian HLT dapat dilalui peserta didik, demikian juga respon peserta didik terhadap situasi didaktis yang dihadirkan, sesuai dengan prediksi respon peserta didik sehingga antisipasi didaktis pedagogis yang telah disiapkan dapat mengatasi setiap respons yang muncul; (5) hasil tes menunjukkan ketrampilan berpikir komputasi peserta didik berkembang baik, khususnya dalam aspek dekomposisi, pengenalan pola, abstraksi, dan algoritma; (6) meskipun implementasi desain menunjukkan hasil positif, ditunjukkan dengan berkurangnya learning obstacle peserta didik, diperlukan perbaikan khususnya pada task 3 dan task 5 yang kemudian disatukan menjadi satu task terpadu dalam penerapan konsep barisan dan deret aritmatika. Temuan ini menegaskan pentingnya desain didaktis yang terencana dan berorientasi pada keterampilan berpikir komputasi dalam pembelajaran matematika, khususnya pada materi barisan dan deret aritmatika. Computational thinking is a critical 21st-century skill that must be fostered through mathematics education. This study aims to design a hypothetical learning trajectory (HLT) and didactical design for arithmetic sequences and series to enhance the computational thinking skills of Grade 10 high school students. A qualitative approach was employed, using a hermeneutic phenomenological method within the framework of Didactical Design Research (DDR), encompassing three stages: prospective analysis (design formulation), metapedagogical analysis (design implementation), and retrospective analysis (reflection and evaluation). The participants consisted of 9 Grade 11 students and one mathematics teacher (for identifying learning obstacles), and 33 Grade 10 students (for implementing the didactical design). Data were collected through document analysis, observations, interviews, tests, and audio recordings. The findings reveal that: (1) three types of learning obstacles were identified: ontogenic obstacles (students’ difficulties in understanding the meaning of mathematical symbol), didactical obstacles (instructional materials that lack of contextual variation), and epistemological obstacles (errors in identifying the value of n, recognizing patterns, and applying formulas); (2) the HLT was constructed to accommodate students’ cognitive progression from understanding arithmetic sequences and their general formulas to applying arithmetic series concepts, all supported by computational thinking skills; (3) the hypothetical didactical design was developed based on the Theory of Didactical Situations, incorporating four phases: action, formulation, validation, and institutionalization; (4) the implementation of the HLT demonstrated that students were able to follow the entire sequence of the HLT. Moreover, students' responses to the presented didactic situations aligned with the predicted responses, enabling the prepared didactic-pedagogical anticipations to effectively address all emerging responses; (5) test results indicated that students exhibited strong computational thinking skills, particularly in decomposition, pattern recognition, abstraction, and algorithmic reasoning; (6) despite the overall positive outcomes reflected in the reduction of learning obstacles, revisions are needed, especially in Task 3 and Task 5, which were subsequently integrated into a single task focusing on the application of both arithmetic sequence and series concepts in a unified context. These findings underscore the importance of well-planned, computational thinking-oriented didactical designs in mathematics instruction, particularly in the domain of arithmetic sequences and series.
![]() |
Text
T_MTK_2311837_Title.pdf Download (533kB) |
![]() |
Text
T_MTK_2311837_Chapter1.pdf Download (411kB) |
![]() |
Text
T_MTK_2311837_Chapter2.pdf Restricted to Staf Perpustakaan Download (1MB) |
![]() |
Text
T_MTK_2311837_Chapter3.pdf Download (321kB) |
![]() |
Text
T_MTK_2311837_Chapter4.pdf Restricted to Staf Perpustakaan Download (4MB) |
![]() |
Text
T_MTK_2311837_Chapter5.pdf Restricted to Staf Perpustakaan Download (406kB) |
![]() |
Text
T_MTK_2311837_Chapter6.pdf Download (341kB) |
![]() |
Text
T_MTK_2311837_Appendix.pdf Restricted to Staf Perpustakaan Download (11MB) |
Item Type: | Thesis (S2) |
---|---|
Additional Information: | https://scholar.google.com/citations?user=mpvF9_MAAAAJ&hl=en&oi=ao ID Sinta Dosen Pembimbing: Sufyani Prabawanto: 5995121 Al Jupri: 5974523 |
Uncontrolled Keywords: | computational thinking, desain didaktis, barisan dan deret aritmatika computational thinking, didactical design research, arithmetic sequence and series |
Subjects: | L Education > L Education (General) L Education > LB Theory and practice of education Q Science > QA Mathematics |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Pendidikan Matematika - S2 |
Depositing User: | Gita Rani Putri Mangiri |
Date Deposited: | 26 Aug 2025 03:55 |
Last Modified: | 26 Aug 2025 03:55 |
URI: | http://repository.upi.edu/id/eprint/135959 |
Actions (login required)
![]() |
View Item |