Rumaisya Az-zahra, - (2024) ANALISIS PENGARUH PENAMBAHAN LAPISAN rGO PADA LaFeO3 DENGAN DOPING Pd MENGGUNAKAN DENSITY FUNCTIONAL THEORY UNTUK SENSOR GAS. S1 thesis, Universitas Pendidikan Indonesia.
Text
S_FIS_2007015_Title.pdf Download (645kB) |
|
Text
S_FIS_2007015_Chapter1.pdf Download (323kB) |
|
Text
S_FIS_2007015_Chapter2.pdf Restricted to Staf Perpustakaan Download (475kB) |
|
Text
S_FIS_2007015_Chapter3.pdf Download (733kB) |
|
Text
S_FIS_2007015_Chapter4.pdf Restricted to Staf Perpustakaan Download (645kB) |
|
Text
S_FIS_2007015_Chapter5.pdf Download (301kB) |
|
Text
S_FIS_2007015_Appendix.pdf Restricted to Staf Perpustakaan Download (387kB) |
Abstract
Etanol merupakan salah satu jenis alkohol yang mudah menguap dan terdapat dampak negatif bagi kesehatan dan lingkungan sehingga diperlukan pengembangan komponen penginderaan gas etanol yaitu sensor gas. LaFeO3 merupakan material perovskite ABO3 yang banyak diaplikasikan pada sensor gas karena komposisi materialnya dan stabilitas parameter penginderaannya. Namun, LaFeO3 masih terbatas sifat penginderaan gasnya sehingga diperlukan doping dalam peningkatan kinerja sensor gas yaitu Paladium. Selain itu, ditambahkan juga lapisan rGO untuk memperkuat energi adsorpsi. Pada penelitian ini dilakukan proses Density Functional Theory (DFT) dengan metode SCF, vc-relax, bands, serta post-processing bands. Hasil dari energi adsorpsi molekul gas etanol pada Pd- LaFeO3 -2,01 eV dan Pd-LaFeO3@rGO -2,29 eV. Penambahan rGO diketahui meningkatkan energi adsorpsi (negatif). Kemudian, untuk nilai band gap Pd-LaFeO3 sebelum terpapar gas 2,34 eV dan saat terpapar 2,06 eV. Kemudian, Pd-LaFeO3@rGO sebelum terpapar sekitar 0,11 eV dan saat terpapar 0,05 eV. Penyempitan struktur pita energi membuat nilai energi celah pita mengecil akibat terciptanya banyak hole. Dari hasil perubahan antara energi adsorpsi dan celah pita diketahui bahwa penambahan rGO pada Pd-LaFeO3 potensial untuk dijadikan kandidat aplikasi sensor gas dari sisi kuatnya adsorpsi dan rendahnya band gap. Ethanol is a type of volatile alcohol that poses negative effects on health and the environment, necessitating the development of ethanol gas sensing components, namely gas sensors. LaFeO3 is a perovskite ABO3 material commonly used in gas sensors due to its material composition and stable sensing parameters. However, LaFeO3 has limited gas sensing capabilities, requiring enhancement through doping with Palladium to improve sensor performance. Additionally, an rGO layer is added to strengthen adsorption energy. This study employed Density Functional Theory (DFT) using SCF, vc-relax, bands, and post-processing bands methods. The results showed ethanol gas molecule adsorption energy on Pd-LaFeO3 was -2,01 eV and on Pd-LaFeO3@rGO was -2,29 eV. The addition of rGO is known to increase (negative) adsorption energy. Furthermore, the band gap of Pd-LaFeO3 before gas exposure was 2,34 eV and 2,06 eV when exposed. For Pd-LaFeO3@rGO, the band gap was around 0,11 eV before exposure and 0,05 eV when exposed. The narrowing of the energy band structure reduced the band gap value due to the creation of more holes. The results indicate that adding rGO to Pd-LaFeO3 is a promising candidate for gas sensor applications, given its strong adsorption and low band gap.
Item Type: | Thesis (S1) |
---|---|
Additional Information: | https://scholar.google.com/citations?user=zsl6UxQAAAAJ&hl=id&authuser=1 ID SINTA Dosen Pembimbing Prof. Dr. Endi Suhendi, M.Si : 5976806 Dr. Selly Feranie, M.Si : 5978969 |
Uncontrolled Keywords: | Sensor gas, LaFeO3, Palladium, reduce graphene oxide, density functional theory Gas sensor, LaFeO3, Palladium, reduced graphene oxide, density functional theory |
Subjects: | L Education > L Education (General) Q Science > QC Physics |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Fisika > Program Studi Fisika (non kependidikan) |
Depositing User: | RUMAISYA AZ-ZAHRA |
Date Deposited: | 28 Aug 2024 09:23 |
Last Modified: | 28 Aug 2024 09:23 |
URI: | http://repository.upi.edu/id/eprint/121365 |
Actions (login required)
View Item |