Teresia Ratna Calista, - (2023) Pengembangan Sistem Presensi Menggunakan Artificial Intelligence Dengan Algoritma Haar-Like Feature dan Linear Discriminant Analysis. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Smart classroom merupakan salah satu bentuk inovasi dari revolusi 5.0, yang mengacu pada fasilitas yang tersedia di suatu Perguruan Tinggi. Salah satu penerapan dari smart classroom adalah sistem presensi digital, pada beberapa universitas masih belum memiliki fasilitas yang dapat menunjang mahasiswa untuk melakukan presensi secara otomatis. Maka dari itu, penelitian kali ini dimaksudkan untuk merancang suatu sistem presensi digital untuk menunjang presensi para mahasiswanya. Penelitian dilakukan dengan mengimplementasikan teknologi Artificial Intelligence dengan algoritma Haar-Like Feature dan Linear Discriminant Analysis (LDA) dan menggunakan metode penelitian AI Project Cycle untuk proses pengembangan sistem. Sampel dan dataset yang digunakan dalam penelitian adalah berupa citra gambar yang tersedia di internet dan citra wajah mahasiswa/i. Pengujian sistem dilakukan melalui metode function test menggunakan tools qase.io. Hasil dari penelitian ini adalah berupa sebuah sistem presensi digital yang dapat melakukan presensi secara akurat. ----- The smart classroom is a form of innovation from the 5.0 revolution, which refers to the facilities available in a university. One of the applications of a smart classroom is a digital presence system, in some universities there are still no facilities that can support students to make attendance automatically. Therefore, this research is intended to design a digital attendance system to support student attendance. The research was carried out by implementing Artificial Intelligence technology with the Haar-Like Feature algorithm and Linear Discriminant Analysis (LDA) and using the AI Project Cycle research method for the system development process. The samples and datasets used in this study are in the form of images available on the internet and facial images of students. System testing is carried out through the function test method using the qase.io tools. The results of this study are in the form of a digital presence system that can make attendance accurately. Keywords: Attendance system, AI Project Cycle, Haar-Like Feature, Linear Discriminant Analysis
![]() |
Text
S_PSTI_1903512_Title.pdf Download (981kB) |
![]() |
Text
S_PSTI_1903512_Chapter1.pdf Download (22MB) |
![]() |
Text
S_PSTI_1903512_Chapter2.pdf Restricted to Staf Perpustakaan Download (22MB) |
![]() |
Text
S_PSTI_1903512_Chapter3.pdf Download (22MB) |
![]() |
Text
S_PSTI_1903512_Chapter4.pdf Restricted to Staf Perpustakaan Download (22MB) |
![]() |
Text
S_PSTI_1903512_Chapter5.pdf Download (22MB) |
![]() |
Text
S_PSTI_1903512_Appendix.pdf Restricted to Staf Perpustakaan Download (22MB) |
Item Type: | Thesis (S1) |
---|---|
Additional Information: | Dosen Pembimbing 1: Rian Andrian Link Google Scholar: https://scholar.google.com/citations?user=UKmGK14AAAAJ&hl=id&oi=ao Dosen Pembimbing 2: Suprih Widodo Link Google Scholar: https://scholar.google.com/citations?hl=id&user=P-awTsUAAAAJ ID SINTA Rian Andrian : 6681695 Suprih Widodo : 5978120 |
Uncontrolled Keywords: | Sistem Presensi, AI Project Cycle, Haar-Like Feature, Linear Discriminant Analysis |
Subjects: | L Education > L Education (General) T Technology > T Technology (General) |
Divisions: | UPI Kampus Purwakarta > S1 Pendidikan Sistem Teknologi dan Informasi |
Depositing User: | Teresia Ratna Calista |
Date Deposited: | 05 Sep 2023 03:39 |
Last Modified: | 05 Sep 2023 03:39 |
URI: | http://repository.upi.edu/id/eprint/98338 |
Actions (login required)
![]() |
View Item |