Fatahillah Mutawakkil Rabbani, - and Aip Saripudin, - and Nurul Fahmi Arief Hakim, - (2025) SISTEM PENDETEKSI KEBOCORAN GAS DAN API MENGGUNAKAN SENSOR MQ2 DAN FLAME DETECTOR BERBASIS YOLO-V10 DENGAN PLATFORM INTERNET OF THINGS (IOT) BLYNK. S1 thesis, Universitas Pendidikan Indonesia.
Abstract
Keselamatan bangunan dan fasilitas yang memanfaatkan gas mudah terbakar itu merupakan aspek penting dalam pencegahan kecelakaan dan kebakaran. Kebocoran gas seperti liquefeied petroleum gas dapat menimbulkan risiko ledakan dan kebakaran yang berpotensi mengancam keselamatan jiwa serta menimbulkan kerugian materil. Penelitian ini bertujuan untuk mengembangkan sistem deteksi dini kebocoran gas dan api dengan mengintegrasikan sensor fisik(MQ-2 dan flame detector) serta deteksi visual berbasis Yolo-v10. Sistem ini dikombinasikan dengan platform internet of things(IoT) blynk sehingga hasil deteksi dapat dipantau dari jarak jauh secara real-time melalui perangkat seluler. Selain itu, metode yang digunakan adalah metode eksperimen, yang meliputi perancangan perangkat keras menggunakan ESP32, pengembangan deteksi visual api berbasis Yolo-v10 dengan kamera webcam, serta integrasi ke dashboard Blynk untuk pemantauan jarak jauh. Pengujian dilakukan dengan mengukur kemampuan sensor MQ-2 dan flame detector pada jarak 10-100 cm, serta performa Yolo-v10 dalam mendeteksi api pada jarak 0,5-3,5 meter. Hasil penelitian menunjukan bahwa sensor MQ-2 dan flame detector efektif mendeteksi adanya api pada jarak 10-40 cm, namun sensitivitasnya menurun pada jarak lebih dari 40 cm. sementara itu, model Yolo v10 mampu mendeteksi api secara konsisten pada jarak 0,5-3 meter. Sistem ini terbukti cepat, andal dan responsif, serta berpotensi membantu masyarakat dalam pencegahan dini terhadap kebakaran maupun kebocoran gas. The safety of buildings and facilities that utilize flammable gases is a crucial aspect in preventing accidents and fires. Gas leaks, such as liquefied petroleum gas, can pose a risk of explosion and fire, potentially threatening life and causing material losses. This research aims to develop an early detection system for gas leaks and fires by integrating physical sensors (MQ-2 and flame detectors) and visual detection based on Yolo-v10. This system is combined with the Blynk Internet of Things (IoT) platform so that detection results can be remotely monitored in real time via mobile devices. Furthermore, the method used is an experimental one, which includes hardware design using ESP32, development of visual fire detection based on Yolo-v10 with a webcam, and integration into the Blynk dashboard for remote monitoring. Testing was conducted by measuring the capabilities of the MQ-2 sensor and flame detector at a distance of 10-100 cm,and the performance of the Yolo-v10 in detecting fire at a distance of 0.5-3.5 meters. The results showed that the MQ-2 sensor and flame detector effectively detected fire at a distance of 10-40 cm, but their sensitivity decreased at distances greater than 40 cm. Meanwhile, the Yolo-v10 model was able to consistently detect fire at a distance of 0.5-3 meters. This system proved fast, reliable, and responsive, and may help the public in early fire prevention due to gas leaks.
|
Text
S_PTOIR_2009585_Chapter2.pdf Restricted to Staf Perpustakaan Download (718kB) |
|
|
Text
S_PTOIR_2009585_Chapter3.pdf Download (609kB) |
|
|
Text
S_PTOIR_2009585_Chapter4.pdf Restricted to Staf Perpustakaan Download (628kB) |
|
|
Text
S_PTOIR_2009585_Title.pdf Download (259kB) |
|
|
Text
S_PTOIR_2009585_Chapter5.pdf Download (207kB) |
|
|
Text
S_PTOIR_2009585_Appendix.pdf Restricted to Staf Perpustakaan Download (401kB) |
|
|
Text
S_PTOIR_2009585_Chapter1.pdf Download (245kB) |
| Item Type: | Thesis (S1) |
|---|---|
| Additional Information: | https://scholar.google.com/citations?view_op=list_works&hl=id&authuser=8&user=Hp9yN40AAAAJ ID SINTA Dosen Pembimbing Aip Saripudin: 6002410 Nurul Fahmi Arief Hakim: 6725597 |
| Uncontrolled Keywords: | Sensor MQ2, Flame detector, Yolo-v10, Internet Of Things, Blynk MQ2 Sensor, Flame detector, Yolo-v10, Internet Of Things, Blynk |
| Subjects: | L Education > L Education (General) T Technology > T Technology (General) T Technology > TJ Mechanical engineering and machinery |
| Divisions: | Fakultas Pendidikan Teknik dan Industri > S1 Pendidikan Teknik Otomasi Industri dan Robotika |
| Depositing User: | Fatahillah Mutawakkil Rabbani |
| Date Deposited: | 24 Nov 2025 04:18 |
| Last Modified: | 24 Nov 2025 04:18 |
| URI: | http://repository.upi.edu/id/eprint/144125 |
Actions (login required)
![]() |
View Item |
