Optimalisasi Latent Space pada CNN Encoder-Decoder untuk Kompresi dan Efisiensi Transmisi Gambar pada Kendaraan Listrik Otonom

    Fauzan Muhammad Iqbal, - and Galura Muhammad Suranegara, - and Endah Setyowati, - (2024) Optimalisasi Latent Space pada CNN Encoder-Decoder untuk Kompresi dan Efisiensi Transmisi Gambar pada Kendaraan Listrik Otonom. S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Penelitian ini mengevaluasi performa model encoder-decoder berbasis CNN untuk kompresi citra dalam konteks transmisi data berbitrate rendah seperti LoRa. Model dikembangkan untuk mengubah citra 80×80 piksel menjadi representasi latent space berbagai berukuran, dengan variasi pada segmen pengembangan dan lima jenis fungsi loss: MSE, MAE, SSIM, Gradient+MSE, dan Charbonnier. Sebanyak 20 model diuji terhadap tiga parameter utama: PSNR, ukuran latent space, dan estimasi waktu pengiriman dengan asumsi bitrate 37,5 kbps. Rata-rata ukuran latent space setelah encoding berada pada kisaran 640 hingga 1152 byte, yang berarti mengalami reduksi ukuran sebesar 89% hingga 94% dibanding gambar asli yang rerata ukurannya 10.820 byte. Kompresi tambahan menggunakan Blosc dan Zlib berhasil menurunkan ukuran latent hingga 15–20% lebih lanjut, tanpa penurunan PSNR yang signifikan. Penurunan ukuran ini berdampak langsung terhadap estimasi waktu pengiriman, yang dapat ditekan hingga di bawah 150 ms untuk beberapa model. Hasil ini memberikan gambaran terukur tentang pengaruh konfigurasi model dan kompresi tambahan latent space terhadap efisiensi representasi dan potensi penerapannya dalam sistem transmisi data sempit berbasis CNN. ----- This research evaluates the performance of a Convolutional Neural Network (CNN)-based encoder-decoder model for image compression in the context of lowrate data transmission such as LoRa. The model is developed to transform an 80×80 pixel image into a latent space representation of various sizes, with variations in the development segment and five types of loss functions: MSE, MAE, SSIM, Gradient+MSE, and Charbonnier. A total of 20 models were tested against three main parameters: PSNR, latent space size, and estimated delivery time assuming a bitrate of 37.5 kbps. The average latent space size after encoding is in the range of 640 to 1152 bytes, which means a size reduction of 89% to 94% compared to the original image whose average size is 10,820 bytes. Additional compression using Blosc and Zlib managed to reduce the latent size by a further 15-20%, without a significant drop in PSNR. This size reduction has a direct impact on the estimated delivery time, which can be reduced to below 150 ms for some models. These results provide a quantified picture of the effect of model configuration and additional compression for latent space on representation efficiency and its potential application in CNN-based narrow data transmission systems.

    [thumbnail of S_SISTEL_2101072_Title.pdf] Text
    S_SISTEL_2101072_Title.pdf

    Download (1MB)
    [thumbnail of S_SISTEL_2101072_Chapter 1.pdf] Text
    S_SISTEL_2101072_Chapter 1.pdf

    Download (322kB)
    [thumbnail of S_SISTEL_2101072_Chapter 2.pdf] Text
    S_SISTEL_2101072_Chapter 2.pdf

    Download (389kB)
    [thumbnail of S_SISTEL_2101072_Chapter 3.pdf] Text
    S_SISTEL_2101072_Chapter 3.pdf

    Download (492kB)
    [thumbnail of S_SISTEL_2101072_Chapter 4.pdf] Text
    S_SISTEL_2101072_Chapter 4.pdf

    Download (529kB)
    [thumbnail of S_SISTEL_2101072_Chapter 5.pdf] Text
    S_SISTEL_2101072_Chapter 5.pdf

    Download (270kB)
    [thumbnail of S_SISTEL_2101072_Appendix.pdf] Text
    S_SISTEL_2101072_Appendix.pdf

    Download (813kB)
    Official URL: https://repository.upi.edu/
    Item Type: Thesis (S1)
    Additional Information: scholar.google.com/citations?user=q44mbxMAAAAJ&hl=id&io=ao ID SINTA Galura Muhammad Suranegara: 6703764 Endah Setyowati: 6681149
    Uncontrolled Keywords: kompresi citra, CNN, latent space, PSNR, fungsi loss, Blosc, Zlib, LoRa image compression, CNN, latent space, PSNR, loss function, Blosc, Zlib, LoRa
    Subjects: T Technology > T Technology (General)
    Divisions: UPI Kampus Purwakarta > S1 Sistem Telekomunikasi
    Depositing User: Muhammad Iqbal Fauzan
    Date Deposited: 11 Jul 2025 02:53
    Last Modified: 11 Jul 2025 02:53
    URI: http://repository.upi.edu/id/eprint/134397

    Actions (login required)

    View Item View Item