PEMODELAN ARUS TEROBOSAN PADA TRANSISTOR DWIKUTUB N-P-N ARMCHAIR GRAPHENE NANORIBBON (AGNR) MENGGUNAKAN METODE MATRIKS TRANSFER

Fahmi, Andita Kaesar (2016) PEMODELAN ARUS TEROBOSAN PADA TRANSISTOR DWIKUTUB N-P-N ARMCHAIR GRAPHENE NANORIBBON (AGNR) MENGGUNAKAN METODE MATRIKS TRANSFER. S1 thesis, Universitas Pendidikan Indonesia.

[img]
Preview
Text
S_FIS_0905580_Title.pdf

Download (97kB) | Preview
[img]
Preview
Text
S_FIS_0905580_Abstract.pdf

Download (133kB) | Preview
[img]
Preview
Text
S_FIS_0905580_Table_of_content.pdf

Download (236kB) | Preview
[img]
Preview
Text
S_FIS_0905580_Chapter1.pdf

Download (146kB) | Preview
[img] Text
S_FIS_0905580_Chapter2.pdf
Restricted to Staf Perpustakaan

Download (986kB)
[img]
Preview
Text
S_FIS_0905580_Chapter3.pdf

Download (218kB) | Preview
[img] Text
S_FIS_0905580_Chapter4.pdf
Restricted to Staf Perpustakaan

Download (1MB)
[img]
Preview
Text
S_FIS_0905580_Chapter5.pdf

Download (124kB) | Preview
[img]
Preview
Text
S_FIS_0905580_Bibliography.pdf

Download (268kB) | Preview
[img] Text
S_FIS_0905580_Appendix1.pdf
Restricted to Staf Perpustakaan

Download (1MB)
Official URL: http://repository.upi.edu

Abstract

Graphene merupakan lapisan tunggal kristal dua dimensi dengan kisi heksagonal dari atom-atom karbon. Terdapat dua jenis nanopita graphene berdasarkan struktur tepiannya yaitu Zigzag Graphene Nanoribbon (ZGNR) yang bersifat metalik dan Armchair Graphene Nanoribbon (AGNR) yang dapat bersifat semikonduktor atau metalik. Seperti bahan semikonduktor lainnya, AGNR dapat dibuat divais elektronika misalnya transistor dwikutub n-p-n. Arus terobosan pada transistor dwikutub n-p-n berbasis AGNR dimodelkan dengan metode semi-numerik. Solusi eksponensial dari persamaan Schrodinger digunakan dan diselesaikan secara analitik. Profil potensial transistor n-p-n dibagi kedalam beberapa segmen pada metode numerik. Hasil analitik digunakan pada metode numerik untuk memperoleh nilai transmitansi elektron. Metode Matriks Transfer (MMT) merupakan metode numerik yang digunakan pada perhitungan nilai transmitansi elektron. Dari hasil perhitungan nilai transmitansi elektron dengan metode MMT, arus terobosan diperoleh dari formula Landauer dengan bantuan metode Gauss Legendre Quadratur (GLQ). Arus terobosan dihitung dengan mengubah sejumlah variabel, yaitu tegangan basis-emitor (VBE) tegangan basis-kolektor (VBC), temperatur dan lebar AGNR. Mode operasi transistor yang digunakan pada pemodelan arus terobosan ini adalah aktif-maju dan aktif-mundur. Hasil perhitungan arus terobosan menunjukan bahwa semakin besar nilai VBE dan VBC yang diberikan maka arus terobosan semakin besar. Hasil perhitungan arus terobosan menunjukan bahwa semakin rendah temperatur, maka semakin besar nilai arus terobosan. Hasil perhitungan arus terobosan juga menunjukan bahwa semakin lebar AGNR maka arus terobosan semakin besar, hal ini disebabkan oleh pengaruh lebar AGNR yang membuat celah energi (Eg) semakin rendah. Hasil perhitungan arus terobosan pada mode operasi aktif-maju kemudian dibandingkan dengan referensi yang telah dilakukan menggunakan pendekatan fungsi Airy. Dengan menggunakan MMT, arus terobosan menunjukan nilai yang mendekati dengan pendekatan fungsi Airy.;--- Graphene is a two dimensional crystal layer with honeycomb lattice structure constructed from carbon atoms. There are two kind of graphene nanoribbon based on its edge shape, they are Zigzag Graphene Nanoribbon (ZGNR) which is metallic and Armchair Graphene Nanoribbon (AGNR) which can be metallic or semiconductor. Like any other semiconducting materials, AGNR can be produced to construct electronic devices, one of them is n-p-n bipolar junction transistor (n-p-n BJT). The tunneling current of n-p-n BJT AGNR-based is modelled with semi-numerical method. The exponential solution from Schrodinger equation is used and solved analytically. The potential profile of n-p-n BJT divided into several segments in the numerical method. The solved analytical result then used in the numerical method to compute the electron transmittance. Transfer Matrix Method (TMM) is a numerical method that is used to compute the electron transmittance. From the calculated transmittance the tunneling current can be computed using Landauer formula with aid of Gauss-Legendre Quadrature (GLQ). The tunneling current then computed with several changes of variables which are base-emitter voltage (VBE), base-collector voltage (VBC), temperature and the AGNR’s width. The operation mode of n-p-n BJT that are used in this model are forward-active and reverse-active. The computed tunneling current show that the greater value of applied voltage for both VBE and VBC, the value of tunneling current is also greater. The computed tunneling current show that at the lower temperature, the tunneling current is greater. The computed tunneling current show that at wider width of AGNR, the tunneling current is greater. This is due to the lowered band-gap energy (Eg) because of the wider width of AGNR. The computed tunneling current in the forward-active mode is then compared with reference that has been done with Airy-wave function approach. By using TMM, the tunneling current show close result compared with Airy-wave function approach.

Item Type: Skripsi,Tesis,Disertasi (S1)
Additional Information: No.panggil : S FIS FAH P-2016 Pembimbing : I.Lilik Hasanah, II.Endi Suhendi
Uncontrolled Keywords: arus terobosan, transistor dwikutub, AGNR, MMT, tunneling current, bipolar junction transistor, AGNR, TMM.
Subjects: Q Science > QC Physics
Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Jurusan Pendidikan Fisika
Depositing User: Mr mhsinf 2017
Date Deposited: 16 Aug 2017 04:20
Last Modified: 16 Aug 2017 04:20
URI: http://repository.upi.edu/id/eprint/24855

Actions (login required)

View Item View Item