PENGEMBANGAN MODEL INDOBERT DALAM CHATBOT PENGELOLAAN KOMUNIKASI BEASISWA IKATAN ALUMNI UPI

    Raisyad Jullfikar, - and Rani Megasari, - and Rosa Ariani Sukamto, - (2025) PENGEMBANGAN MODEL INDOBERT DALAM CHATBOT PENGELOLAAN KOMUNIKASI BEASISWA IKATAN ALUMNI UPI. S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Komunikasi efektif antara alumni dan organisasi penting untuk penyampaian informasi salah satunya terkait beasiswa. Di IKA UPI, Sumber Daya Manusia (SDM) terbatas membuat respons lambat dan inefesiensi komunikasi. Penelitian ini membuat chatbot menggunakan model IndoBERT yang merupakan model berbasis BERT (Bidirectional Encoder Representations from Transformers) untuk menjawab terkait beasiswa secara otomatis. Model diadaptasi melalui lima fine-tuning, yaitu Masked Language Modeling (MLM), Next Sentence Prediction (NSP), Intent Classification, Extractive QA (SQuAD), dan Semantic Retrieval. Evaluasi memakai metrik accuracy, recall, f1-score, exact match (EM), top-k accuracy, mean reciprocal rank (MRR), dan latency. Hasil uji menunjukkan kinerja kuat di tugas dasar seperti f1-score 93,33% untuk NSP dan 86,74% untuk intent. Tantangan tampak pada pemahaman konteks lebih dalam seperti pada extractive QA meraih f1-score 43,57% dan retrieval MRR 0,34. Temuan ini menegaskan kelayakan penerapan chatbot menggunakan model IndoBERT untuk pengelolaan komunikasi beasiswa IKA UPI, sekaligus memetakan tantangan dalam tugas-tugas pemahaman konteks yang lebih dalam. Effective communication between alumni and organizations is crucial for conveying information, including scholarships. At IKA UPI, limited human resources (HR) make communication responses slow and inefficient. This study created a chatbot using the IndoBERT model, a BERT-based model (Bidirectional Encoder Representations from Transformers) to automatically answer questions about scholarships. The model was modified through five fine-tunings: Masked Language Modeling (MLM), Next Sentence Prediction (NSP), Intent Classification, Extractive QA (SQuAD), and Semantic Retrieval. The evaluation used metrics of accuracy, recall, f1-score, exact match (EM), top-k accuracy, mean reciprocal rank (MRR), and latency. Test results showed strong performance in basic tasks, such as an f1-score of 93.33% for NSP and 86.74% for intent. Challenges arose in deeper understanding, such as in extractive QA, which achieved an f1-score of 43.57% and a retrieval MRR of 0.34. This finding of the feasibility of implementing a chatbot using the IndoBERT model for managing IKA UPI scholarship communications, reflects both the challenges in the tasks of understanding the context more deeply.

    [thumbnail of S_KOM_2106238_Title.pdf] Text
    S_KOM_2106238_Title.pdf

    Download (591kB)
    [thumbnail of S_KOM_2106238_Chapter1.pdf] Text
    S_KOM_2106238_Chapter1.pdf

    Download (370kB)
    [thumbnail of S_KOM_2106238_Chapter2.pdf] Text
    S_KOM_2106238_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (863kB)
    [thumbnail of S_KOM_2106238_Chapter3.pdf] Text
    S_KOM_2106238_Chapter3.pdf

    Download (472kB)
    [thumbnail of S_KOM_2106238_Chapter4.pdf] Text
    S_KOM_2106238_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    [thumbnail of S_KOM_2106238_Chapter5.pdf] Text
    S_KOM_2106238_Chapter5.pdf

    Download (320kB)
    Official URL: https://repository.upi.edu
    Item Type: Thesis (S1)
    Additional Information: https://scholar.google.com/citations?hl=en&user=V5sB0ioAAAAJ ID SINTA Dosen Pembimbing: Rani Megasari: 5992674 Rosa Ariani Sukamto: 5974496
    Uncontrolled Keywords: Beasiswa, BERT, Chatbot, Fine-Tuning, Natural Language Processing (NLP) BERT, Chatbot, Fine-Tuning, Natural Language Processing (NLP), Scholarship
    Subjects: H Social Sciences > HE Transportation and Communications
    L Education > L Education (General)
    Q Science > QA Mathematics
    T Technology > T Technology (General)
    Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Ilmu Komputer
    Depositing User: Raisyad Jullfikar
    Date Deposited: 08 Sep 2025 03:17
    Last Modified: 08 Sep 2025 03:17
    URI: http://repository.upi.edu/id/eprint/137818

    Actions (login required)

    View Item View Item