OPTIMISASI PENJADWALAN OBAT UNTUK KEMOTERAPI KANKER MENGGUNAKAN NON-DOMINATED SORTING GENETIC ALGORITHM-II (NSGA-II)

    Yusyifa Ashilah Azmii, - and Kartika Yulianti, - and Ririn Sispiyati, - (2025) OPTIMISASI PENJADWALAN OBAT UNTUK KEMOTERAPI KANKER MENGGUNAKAN NON-DOMINATED SORTING GENETIC ALGORITHM-II (NSGA-II). S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Pada penelitian ini dikembangkan model matematika untuk penjadwalan obat kemoterapi kanker, yaitu masalah menjadwalkan obat yang diberikan kepada pasien dengan tujuan mengurangi sel kanker sekaligus mengurangi toksisitas dalam tubuh pasien. Pada penelitian ini, penjadwalan obat menggunakan kemoterapi kanker non spesifik siklus sel dengan model sistem dinamiknya terdiri dari sel sehat, sel kanker, dosis obat, konsentrasi obat, toksisitas pasien dan pengaruh obat. Penjadwalan ini dioptimalkan secara keseluruhan menggunakan Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Proses dalam metode ini mencakup evaluasi terhadap solusi-solusi penjadwalan yang dihasilkan, pengelompokan berdasarkan tingkat dominasi pareto, serta pemilihan dan pengembangan solusi terbaik dari generasi ke generasi yang bertujuan meningkatkan kemampuan eksplorasi dan eksploitasi solusi dalam ruang pencarian kombinasi dosis. Penelitian ini menggunakan data sekunder berupa parameter biologis dan batasan klinis untuk memodelkan penjadwalan kemoterapi kanker non spesifik siklus sel, termasuk laju pertumbuhan dan kematian sel, imigrasi antar sel, peluruhan obat, eliminasi toksisitas, serta batas dosis. Hasil penelitian menunjukkan bahwa algoritma ini mampu menghasilkan solusi dengan jadwal dosis optimal setiap 8 hari sekali selama 106 hari dengan 14 kali pemberian dosis obat. Dosis berkisar antara 20,00 hingga 29,55 mg/m² dengan rata-rata 24,28 mg/m² dan standar deviasi 3,64 mg/m² sehingga mampu meminimumkan jumlah sel kanker dan kerusakan terhadap sel sehat. In this study, a mathematical model for cancer chemotherapy drug scheduling was developed, which is the problem of scheduling drugs given to patients with the aim of reducing cancer cells while reducing toxicity in the patient's body. In this study, drug scheduling uses non-cell cycle-specific cancer chemotherapy with a dynamical system model consisting of healthy cells, cancer cells, drug doses, drug concentrations, patient toxicity and drug effects. This scheduling is optimized as a whole using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The process in this method includes evaluation of the resulting scheduling solutions, clustering based on pareto dominance, and selection and development of the best solution from generation to generation which aims to increase the exploration and exploitation of solutions in the search space of dose combinations. This study uses secondary data in the form of biological parameters and clinical constraints to model cell cycle non-specific cancer chemotherapy scheduling, including cell growth and death rates, intercellular immigration, drug decay, toxicity elimination, and dose limits. The results showed that this algorithm was able to produce a solution with an optimal dosage schedule every 8 days for 106 days with 14 times of drug dosing. Doses ranged from 20,00 to 29,55 mg/m² with an average of 24,28 mg/m² and a standard deviation of 3,64 mg/m² so as to minimize the number of cancer cells and damage to healthy cells.

    [thumbnail of S_MAT_2108855_Title.pdf] Text
    S_MAT_2108855_Title.pdf

    Download (1MB)
    [thumbnail of S_MAT_2108855_Chapter1.pdf] Text
    S_MAT_2108855_Chapter1.pdf

    Download (334kB)
    [thumbnail of S_MAT_2108855_Chapter2.pdf] Text
    S_MAT_2108855_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    [thumbnail of S_MAT_2108855_Chapter3.pdf] Text
    S_MAT_2108855_Chapter3.pdf

    Download (507kB)
    [thumbnail of S_MAT_2108855_Chapter4.pdf] Text
    S_MAT_2108855_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    [thumbnail of S_MAT_2108855_Chapter5.pdf] Text
    S_MAT_2108855_Chapter5.pdf

    Download (201kB)
    [thumbnail of S_MAT_2108855_Appendix.pdf] Text
    S_MAT_2108855_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    Official URL: https://repository.upi.edu/
    Item Type: Thesis (S1)
    Additional Information: https://scholar.google.com/citations?view_op=new_profile&hl=id&authuser=1 ID SINTA Dosen Pembimbing: Kartika Yulianti: 5979108 Ririn Sispiyati: 5986406
    Uncontrolled Keywords: Kemoterapi Kanker, Penjadwalan Obat, Non-dominated Sorting Genetic Algorithm-II, Optimisasi Multi Objektif, Non Spesifik Siklus Sel. Cancer Chemotherapy, Drug Scheduling, Non-dominated Sorting Genetic Algorithm-II, Multi Objective Optimization, Non-Cell Cycle Specific.
    Subjects: L Education > L Education (General)
    Q Science > QA Mathematics
    Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Matematika - S1 > Program Studi Matematika (non kependidikan)
    Depositing User: Yusyifa Ashilah Azmii
    Date Deposited: 20 Aug 2025 06:59
    Last Modified: 20 Aug 2025 06:59
    URI: http://repository.upi.edu/id/eprint/135860

    Actions (login required)

    View Item View Item