eprintid: 145402 rev_number: 21 eprint_status: archive userid: 221381 dir: disk0/00/14/54/02 datestamp: 2025-12-09 07:09:43 lastmod: 2025-12-09 07:09:43 status_changed: 2025-12-09 07:09:43 type: thesis metadata_visibility: show creators_name: Andreas Malem Sebayang, - creators_name: Iwan Kustiawan, - creators_nim: NIM2004093 creators_nim: NIDN0008097703 creators_id: Andreas.sebayang9999@upi.edu creators_id: iwan_kustiawan@upi.edu contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Iwan Kustiawan, - contributors_nidn: NIDN0008097703 contributors_id: iwan_kustiawan@upi.edu title: RANCANG BANGUN KERANGKA KERJA MULTI-MODEL MACHINE LEARNING UNTUK SISTEM PREDICTIVE MAINTENANCE DENGAN ANTARMUKA BERBASIS WEBSITE ispublished: pub subjects: L1 subjects: T1 subjects: TK divisions: ELT full_text_status: restricted keywords: Pemeliharaan prediktif, peramalan, deteksi anomali, prediksi kegagalan, Extreme Gradient Boosting (XGBoost), Isolation Forest (IForest), Random Forest (RF), Website. Predictive Maintenance, Forecasting, Anomaly Detection, Failure Prediction, Extreme Gradient Boosting (XGBoost), Isolation Forest (IForest), Random Forest (RF), Website. note: https://scholar.google.com/citations?hl=en&user=KcstBjAAAAAJ ID SINTA Dosen Pembimbing: Iwan Kustiawan: 5996452 abstract: Industri 4.0 mendorong transformasi menuju ekosistem berbasis teknologi dan data, di mana pemeliharaan prediktif menjadi salah satu keunggulan utama untuk meminimalkan waktu henti dan biaya perawatan. Namun, integrasi berbagai model machine learning dengan fungsi berbeda ke dalam satu dashboard masih menjadi tantangan. Penelitian ini mengembangkan sistem pemeliharaan prediktif berbasis website, yang mengintegrasikan tiga model unggulan, seperti extreme gradient boosting (XGBoost) untuk peramalan data operasional, isolation forest (IForest) untuk deteksi anomali, dan random forest (RF) untuk prediksi kegagalan perangkat. Proses mencakup pengumpulan data sensor dan historis kegagalan, pembersihan data, pelatihan dan tuning model, evaluasi performa, dan pengembangan dashboard berbasis website. Hasil menunjukkan sistem mampu memberikan prediksi kondisi perangkat dengan akurasi tinggi dan kemudahan integrasi melalui dashboard, meningkatkan efisiensi dan keandalan pengelolaan peralatan industri. Industry 4.0 drives the transformation toward a technology and data-driven ecosystem, where predictive maintenance becomes a key advantage to minimize downtime and maintenance costs. However, integrating multiple machine learning models with different functions into a single dashboard remains a challenge. This study develops a web-based predictive maintenance system, which integrates three leading models: extreme gradient boosting (XGBoost) for operational data forecasting, isolation forest (IForest) for anomaly detection, and random forest (RF) for equipment failure prediction. The process includes collecting sensor and historical failure data, data cleaning, model training and tuning, performance evaluation, and the development of an interactive web-based dashboard. The results show that the system can provide highly accurate predictions of equipment conditions and easy integration through the dashboard, improving the efficiency and reliability of industrial equipment management. date: 2025-08-25 date_type: published institution: Universitas Pendidikan Indonesia department: KODEPRODI20201#Teknik Elektro_S1 thesis_type: other thesis_name: other official_url: https://repository.upi.edu/ related_url_url: https://perpustakaan.upi.edu/ related_url_type: org citation: Andreas Malem Sebayang, - and Iwan Kustiawan, - (2025) RANCANG BANGUN KERANGKA KERJA MULTI-MODEL MACHINE LEARNING UNTUK SISTEM PREDICTIVE MAINTENANCE DENGAN ANTARMUKA BERBASIS WEBSITE. S1 thesis, Universitas Pendidikan Indonesia. document_url: http://repository.upi.edu/145402/1/S_TE_2004093_Title.pdf document_url: http://repository.upi.edu/145402/2/S_TE_2004093_Chapter1.pdf document_url: http://repository.upi.edu/145402/3/S_TE_2004093_Chapter2.pdf document_url: http://repository.upi.edu/145402/4/S_TE_2004093_Chapter3.pdf document_url: http://repository.upi.edu/145402/5/S_TE_2004093_Chapter4.pdf document_url: http://repository.upi.edu/145402/6/S_TE_2004093_Chapter5.pdf document_url: http://repository.upi.edu/145402/7/S_TE_2004093_Appendix.pdf