TY - THES TI - RANCANG BANGUN KERANGKA KERJA MULTI-MODEL MACHINE LEARNING UNTUK SISTEM PREDICTIVE MAINTENANCE DENGAN ANTARMUKA BERBASIS WEBSITE N2 - Industri 4.0 mendorong transformasi menuju ekosistem berbasis teknologi dan data, di mana pemeliharaan prediktif menjadi salah satu keunggulan utama untuk meminimalkan waktu henti dan biaya perawatan. Namun, integrasi berbagai model machine learning dengan fungsi berbeda ke dalam satu dashboard masih menjadi tantangan. Penelitian ini mengembangkan sistem pemeliharaan prediktif berbasis website, yang mengintegrasikan tiga model unggulan, seperti extreme gradient boosting (XGBoost) untuk peramalan data operasional, isolation forest (IForest) untuk deteksi anomali, dan random forest (RF) untuk prediksi kegagalan perangkat. Proses mencakup pengumpulan data sensor dan historis kegagalan, pembersihan data, pelatihan dan tuning model, evaluasi performa, dan pengembangan dashboard berbasis website. Hasil menunjukkan sistem mampu memberikan prediksi kondisi perangkat dengan akurasi tinggi dan kemudahan integrasi melalui dashboard, meningkatkan efisiensi dan keandalan pengelolaan peralatan industri. Industry 4.0 drives the transformation toward a technology and data-driven ecosystem, where predictive maintenance becomes a key advantage to minimize downtime and maintenance costs. However, integrating multiple machine learning models with different functions into a single dashboard remains a challenge. This study develops a web-based predictive maintenance system, which integrates three leading models: extreme gradient boosting (XGBoost) for operational data forecasting, isolation forest (IForest) for anomaly detection, and random forest (RF) for equipment failure prediction. The process includes collecting sensor and historical failure data, data cleaning, model training and tuning, performance evaluation, and the development of an interactive web-based dashboard. The results show that the system can provide highly accurate predictions of equipment conditions and easy integration through the dashboard, improving the efficiency and reliability of industrial equipment management. M1 - other UR - https://repository.upi.edu/ KW - Pemeliharaan prediktif KW - peramalan KW - deteksi anomali KW - prediksi kegagalan KW - Extreme Gradient Boosting (XGBoost) KW - Isolation Forest (IForest) KW - Random Forest (RF) KW - Website. Predictive Maintenance KW - Forecasting KW - Anomaly Detection KW - Failure Prediction KW - Extreme Gradient Boosting (XGBoost) KW - Isolation Forest (IForest) KW - Random Forest (RF) KW - Website. N1 - https://scholar.google.com/citations?hl=en&user=KcstBjAAAAAJ ID SINTA Dosen Pembimbing: Iwan Kustiawan: 5996452 A1 - Andreas Malem Sebayang, - A1 - Iwan Kustiawan, - ID - repoupi145402 AV - restricted Y1 - 2025/08/25/ PB - Universitas Pendidikan Indonesia ER -