TY - THES AV - restricted M1 - other TI - LANDSLIDE PREDICTION DATA PROCESSING USING LOGISTIC REGRESSION ALGORITHM KW - Vibrations KW - Seminars KW - Landslides KW - Logistic regression KW - Accuracy KW - Machine learning KW - Humidity KW - Predictive models KW - Terrain factors KW - Sensor systems SN - 2832-1456 UR - https://ieeexplore.ieee.org/document/10963634 ID - repoupi143773 N2 - Landslides pose a significant threat to life and property. This research aims to develop a machine-learning model to predict landslide occurrences, focusing on logistic regression. Key factors such as inclination, vibration, humidity, and precipitation thresholds are considered to categorize areas into risk levels: safe, warning, alert, and danger. To address the challenges of real world data acquisition, a simulated environment was employed to generate a comprehensive dataset. The developed model achieved an accuracy of 84% on the validation dataset, demonstrating its potential for accurate landslide prediction. This research contributes to the advancement of early warning systems and risk mitigation strategies for landslide-prone areas. Y1 - 2025/07/30/ PB - Universitas Pendidikan Indonesia N1 - SINTA ID DOSEN PEMBIMBING Arjuni Budi Pantjawati: 5994602 Aip Saripudin: 6002410 Karya ini adalah tugas akhir setara dengan skripsi sesuai dengan SK Dekan Fakultas Pendidikan Teknik dan Industri Nomor: 6891/UN40.A5/PK.03.03/2025 A1 - Alvin Dzaki Pratama Darmawan, - A1 - Arjuni Budi Pantjawati, - A1 - Aip Saripudin, - ER -