%0 Thesis %9 S3 %A Aceng Sobana, - %A Isma Widiaty, - %A Mumu Komaro, - %B KODEPRODI83001#Pendidikan Teknologi dan Kejuruan_S3 %D 2025 %F repoupi:138298 %I Universitas Pendidikan Indonesia %K identitas karier, kecerdasan buatan, bimbingan karier, pendidikan tinggi, technology acceptance model, design based research career identity, artificial intelligence, career guidance, higher education, technology acceptance model, design-based research %T PENGEMBANGAN KERANGKA KERJA DAN PROTOTIPE KECERDASAN ARTIFISIAL UNTUK BIMBINGAN CAREER IDENTITY MAHASISWA PERGURUAN TINGGI %U http://repository.upi.edu/138298/ %X Globalisasi dan transformasi digital telah mengubah lanskap dunia kerja secara fundamental, menciptakan kesenjangan antara keterampilan lulusan perguruan tinggi dengan kebutuhan industri. Fenomena ini berdampak pada meningkatnya angka pengangguran terdidik, sehingga perguruan tinggi memiliki tanggung jawab strategis dalam mempersiapkan mahasiswa menghadapi dinamika karier masa depan. Meskipun berbagai penelitian telah membuktikan pentingnya pengembangan career identity, masih terdapat gap signifikan antara teori dan implementasi praktis program pengembangan karier di institusi pendidikan tinggi. Penelitian ini mengembangkan model bimbingan karier berbasis kecerdasan artifisial menggunakan metodologi Design-Based Research (DBR) melalui empat fase sistematis: analisis bibliometrik, identifikasi kebutuhan, pengembangan kerangka kerja, dan pengujian prototipe. Analisis bibliometrik terhadap 1.220 dokumen dari database Scopus mengungkap evolusi tematik dari konsep vokasi tradisional menuju pendekatan pengembangan yang dinamis. Tinjauan pustaka sistematis dari 33 artikel dan wawancara empiris mengidentifikasi lima faktor kunci yang memengaruhi pembentukan identitas karier: karakteristik personal, pengaruh sosial-budaya, eksplorasi karier, refleksi diri, dan sistem pendukung. Model yang dikembangkan terdiri dari empat komponen terintegrasi: Aktualisasi Diri melalui Penilaian Komprehensif, Keterlibatan Ekosistem Kolaboratif, Evolusi Kompetensi Adaptif, dan Sistem Cerdas Pendukung Keputusan. Model penilaian kesiapan institusional menghasilkan skor 30,25/50 untuk institusi sasaran, memungkinkan implementasi bertahap. Platform prototipe Software-as-a-Service yang mengintegrasikan layanan AI eksternal (OpenAI API, database O*NET) diujicoba kepada 56 mahasiswa dengan tingkat penerimaan pengguna yang baik: Perceived Usefulness (84,73%), Perceived Ease of Use (82,05%), Attitude Toward Using (80,83%), dan Behavioral Intention to Use (79,29%). Kontribusi utama penelitian ini meliputi pengembangan kerangka kerja konseptual berbasis teori yang mengintegrasikan teori karier klasik dengan kapabilitas AI, model penilaian kesiapan institusional yang praktis, dan prototipe fungsional yang mendemonstrasikan penerapan dalam konteks kesiapan sedang, menyediakan solusi yang dapat diskalakan untuk institusi pendidikan tinggi dengan kapasitas beragam. Globalization and digital transformation have fundamentally changed the landscape of the workforce, creating a gap between the skills of college graduates and industry needs. This phenomenon has resulted in increasing rates of educated poverty, thus placing a strategic responsibility on universities to prepare students for the dynamics of future careers. Although various studies have demonstrated the importance of career identity development, a significant gap remains between theory and the practical implementation of career development programs in higher education institutions. This study develops an artificial intelligence-based career guidance model using the Design-Based Research (DBR) methodology through four systematic phases: bibliometric analysis, needs identification, framework development, and prototype testing. Bibliometric analysis of 1,220 documents from the Scopus database reveals the thematic evolution from traditional vocational concepts to a dynamic development approach. A systematic literature review of 33 articles and empirical interviews identified five key factors influencing career identity formation: personal characteristics, socio-cultural influences, career exploration, self-reflection, and support systems. The developed model consists of four integrated components: Self-Actualization through Comprehensive Assessment, Collaborative Ecosystem Engagement, Adaptive Competency Evolution, and Intelligent Decision Support Systems. The institutional readiness assessment model yielded a score of 30.25/50 for institutional goals, enabling a phased implementation. A prototype Software-as-a-Service platform integrating external AI services (OpenAI API, O*NET database) was piloted with 56 students with good user acceptance: Perceived Effectiveness (84.73%), Perceived Ease of Use (82.05%), Attitude Toward Used (80.83%), and Behavioral Intention to Use (79.29%). Key contributions of this research include the development of a theoretically grounded conceptual framework that integrates classical career theory with AI capabilities, a practical institutional readiness assessment model, and a functional prototype that demonstrates implementation in a medium-readiness context, providing a scalable solution for higher education institutions of varying capacities. %Z https://scholar.google.com/citations?user=cL8BQZUAAAAJ&hl=id ID Sinta Dosen Pembimbing Isma Widiaty 5978971 Mumu Komaro 5993878