eprintid: 136629 rev_number: 27 eprint_status: archive userid: 217043 dir: disk0/00/13/66/29 datestamp: 2025-09-01 05:00:05 lastmod: 2025-09-01 05:00:05 status_changed: 2025-09-01 05:00:05 type: thesis metadata_visibility: show creators_name: Alya Sahrani, - creators_name: Rizki Hikmawan, - creators_nim: NIM2102985 creators_nim: NIDN0031078803 creators_id: alyasahrani@upi.edu creators_id: hikmariz@upi.edu contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Rizki Hikmawan, - contributors_nidn: 0031078803 contributors_id: hikmariz@upi.edu title: KOMPARASI ANALISIS SENTIMEN PUBLIK DENGAN MODEL LONG SHORT-TERM MEMORY (LSTM) DAN INDONESIA BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS (INDOBERT) (STUDI KASUS : PROGRAM MSIB) ispublished: pub subjects: T1 divisions: Pend.STI_S1_PWT full_text_status: restricted keywords: Analisis Sentimen, LSTM, IndoBERT, Program MSIB, Machine Learning. Sentiment Analysis, LSTM, IndoBERT, MSIB Program, Machine Learning. note: https://scholar.google.com/citations?hl=en&user=udrP4hgAAAAJ ID SINTA Dosen Pembimbing: Rizki Hikmawan: 6122897 abstract: Penelitian ini bertujuan membandingkan performa model Long Short-Term Memory (LSTM) dan Indonesian Bidirectional Encoder Representations from Transformers (IndoBERT) dalam analisis sentimen opini publik mengenai Program Magang dan Studi Independen Bersertifikat (MSIB). Di era digital, media sosial menjadi sumber utama opini publik, namun teks yang dihasilkan cenderung tidak terstruktur, penuh sarkasme, code switching, serta bahasa informal sehingga menimbulkan tantangan bagi model konvensional. Penelitian ini menggunakan pendekatan kuantitatif deskriptif komparatif dengan data opini publik yang dikumpulkan melalui crawling dari media sosial X sebanyak 3.593 data. Setelah preprocessing, distribusi sentimen menunjukkan 61,5% negatif dan 38,5% positif. Model LSTM dan IndoBERT kemudian dilatih dan dievaluasi menggunakan metrik klasifikasi. Hasil pengujian menunjukkan LSTM mencapai akurasi 85%, presisi 91%, recall 83%, dan F1-score 87%. Sementara itu, IndoBERT secara signifikan unggul dengan akurasi 95%, presisi 95%, recall 97%, dan F1-score 96%. Hal ini membuktikan IndoBERT lebih efektif dalam menangani teks kompleks khas media sosial Indonesia. ----- This study aims to compare the performance of Long Short-Term Memory (LSTM) and Indonesian Bidirectional Encoder Representations from Transformers (IndoBERT) in sentiment analysis of public opinion regarding the Magang dan Studi Independen Bersertifikat (MSIB) program. In the digital era, social media has become a primary source of public opinion; however, the texts are often unstructured, containing sarcasm, code-switching, and informal language, which pose challenges for conventional models. This research adopts a quantitative descriptive-comparative approach using 3,593 public opinion data collected through crawling from the social media platform X. After preprocessing, sentiment distribution indicated 61.5% negative and 38.5% positive opinions. Both LSTM and IndoBERT models were trained and evaluated using classification metrics. The experimental results revealed that LSTM achieved 85% accuracy, 91% precision, 83% recall, and an F1-score of 87%. In contrast, IndoBERT significantly outperformed LSTM with 95% accuracy, 95% precision, 97% recall, and an F1-score of 96%. These findings demonstrate that IndoBERT is more effective in handling complex text characteristics typical of Indonesian social media. date: 2025-08-14 date_type: published institution: Universitas Pendidikan Indonesia department: KODEPROD159201#Pendidikan Sistem dan Teknologi Informasi Kampus Purwakarta_S1 thesis_type: other thesis_name: other official_url: https://repository.upi.edu/ related_url_url: https://perpustakaan.upi.edu/ related_url_type: org citation: Alya Sahrani, - and Rizki Hikmawan, - (2025) KOMPARASI ANALISIS SENTIMEN PUBLIK DENGAN MODEL LONG SHORT-TERM MEMORY (LSTM) DAN INDONESIA BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS (INDOBERT) (STUDI KASUS : PROGRAM MSIB). S1 thesis, Universitas Pendidikan Indonesia. document_url: http://repository.upi.edu/136629/1/S_PSTI_2102985_Title.pdf document_url: http://repository.upi.edu/136629/2/S_PSTI_2102985_Chapter%201.pdf document_url: http://repository.upi.edu/136629/3/S_PSTI_2102985_Chapter%202.pdf document_url: http://repository.upi.edu/136629/4/S_PSTI_2102985_Chapter%203.pdf document_url: http://repository.upi.edu/136629/5/S_PSTI_2102985_Chapter%204.pdf document_url: http://repository.upi.edu/136629/6/S_PSTI_2102985_Chapter%205.pdf document_url: http://repository.upi.edu/136629/7/S_PSTI_2102985_Appendix.pdf