ANALISIS PENENTUAN ASOSIASI PADA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (STUDI KASUS KLINIK BIDAN NENENG HASANAH, AM.KEB DI CIKARANG BARAT BEKASI)

    Zahra Luthfiah, - (2023) ANALISIS PENENTUAN ASOSIASI PADA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (STUDI KASUS KLINIK BIDAN NENENG HASANAH, AM.KEB DI CIKARANG BARAT BEKASI). S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Salah satu data yang cukup krusial dalam bidang kesehatan adalah informasi mengenai data
    obat, kebutuhan obat menghasilkan transaksi penjualan setiap harinya dan kebanyakan
    transaksi penjualan obat di klinik tidak memiliki laporan terperinci. Contohnya pada klinik
    Bidan Neneng Hasanah, Am.Keb di Cikarang Barat Bekasi yang telah di observasi pada
    tanggal 6 Desember 2022, melihat kebutuhan informasi mengenai data transaksi penjualan
    obat yang tidak memiliki laporan terperinci maka perlu adanya pengolahan data agar
    mendapatkan suatu pola keterkaitan antar itemset produk yang sering dibeli dengan waktu
    yang sama. Berdasarkan hal tersebut, peneliti menggunakan pendekatan kuantitatif
    deskriptif dengan proses analisis yang dilakukan melalui observasi, pencatatan dan
    wawancara. Untuk mengetahui pola transaksi, peneliti menggunakan aturan asosiasi
    dengan algoritma apriori dengan parameter minimum support = 50% dan minimum
    confidence = 70% yang ditetapkan. Peneliti mengambil data transaksi selama 1 tahun pada
    tahun 2022 dan diolah dengan 3 bagian yaitu data pertahun, per-enam bulan dan per-enam
    bulan terakhir menggunakan alat uji Spreadsheet dan divalidasi oleh RapidMiner. Hasil
    alat uji menghasilkan analisis yang signifikan yaitu dengan 5 aturan asosiasi dan
    menghasilkan aturan asosiasi tertinggi dengan itemset “Jika membeli Andalan Suntik KB
    maka membeli Onemed One Swabs”, itemset tersebut memiliki masing-masing rules
    dengan item Andalan Suntik KB minimum support 72% dan Onemed One Swabs minimum
    confidence 100%. Hasil dari pengujian nantinya dipakai sebagai keputusan membeli obat
    di waktu yang akan mendatang.
    -----
    One of the data that is quite crucial in the health sector is information about drug data,
    drug needs generate sales transactions every day and most drug sales transactions in
    clinics do not have detailed reports. For example, at the Midwife Neneng Hasanah clinic,
    Am.Keb in Cikarang Barat Bekasi, which was observed on December 6, 2022, seeing the
    need for information regarding drug sales transaction data that does not have a detailed
    report, it is necessary to process data in order to obtain a pattern of linkages between
    product item sets which are often purchased at the same time. Based on this, researchers
    used a descriptive quantitative approach with an analysis process carried out through
    observation, recording and interviews. To find out transaction patterns, researchers use
    association rules with the a priori algorithm with the parameters of minimum support =
    50% and minimum confidence = 70% set. Researchers took transaction data for 1 year in
    2022 and processed it into 3 parts, namely data per year, every six months and the last six
    months using the Spreadsheet test tool and validated by RapidMiner. The results of the test
    tool produce a significant analysis, namely with 5 association rules and produce the highest
    association rules with the itemset "If you buy the Mainstay for KB Injection then buy
    Onemed One Swabs", the itemset has each rule with the Mainstay for KB Injection
    minimum support 72% and Onemed One swab minimum 100% confidence. The results of
    the test will be used as a decision to buy drugs in the future.

    [thumbnail of S_PSTI_1908717_Title.pdf] Text
    S_PSTI_1908717_Title.pdf

    Download (581kB)
    [thumbnail of S_PSTI_1908717_Chapter 1.pdf] Text
    S_PSTI_1908717_Chapter 1.pdf

    Download (445kB)
    [thumbnail of S_PSTI_1908717_Chapter 2.pdf] Text
    S_PSTI_1908717_Chapter 2.pdf
    Restricted to Staf Perpustakaan

    Download (619kB)
    [thumbnail of S_PSTI_1908717_Chapter 3.pdf] Text
    S_PSTI_1908717_Chapter 3.pdf

    Download (249kB)
    [thumbnail of S_PSTI_1908717_Chapter 4.pdf] Text
    S_PSTI_1908717_Chapter 4.pdf
    Restricted to Staf Perpustakaan

    Download (1MB)
    [thumbnail of S_PSTI_1908717_Chapter 5.pdf] Text
    S_PSTI_1908717_Chapter 5.pdf

    Download (333kB)
    [thumbnail of S_PSTI_1908717_Appendix.pdf] Text
    S_PSTI_1908717_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (922kB)
    Official URL: http://repositori.upi.edu
    Item Type: Thesis (S1)
    Additional Information: Dosen Pembimbing Suprih Widodo Sinta ID : 5978120 https://scholar.google.com/citations?user=P-awTsUAAAAJ&hl=id&oi=ao Dosen Pembimbing Rian Andrian Sinta ID : 6681695 https://scholar.google.com/citations?user=UKmGK14AAAAJ&hl=id&oi=ao
    Uncontrolled Keywords: aturan asosiasi, hasil perhitungan, pertahun, per-enam bulan
    Subjects: L Education > L Education (General)
    L Education > LC Special aspects of education
    Divisions: UPI Kampus Purwakarta > S1 Pendidikan Sistem Teknologi dan Informasi
    Depositing User: Zahra Luthfiah
    Date Deposited: 29 Aug 2023 06:51
    Last Modified: 29 Aug 2023 06:51
    URI: http://repository.upi.edu/id/eprint/97858

    Actions (login required)

    View Item View Item