

BAB III

PENGAMBILAN DATA

ETAP Power Station 4.0

ETAP (Electrical Transients Analyzer Program) adalah suatu program komputer terintegrasi yang didesain untuk menyelesaikan permasalahan analysis transient, short circuits, harmonic, motor acceleration, optimal power flow, underground receway systems pada sistem tenaga listrik. Program ini menggunakan secara teknis model yang sebenarnya, menggunakan peralatan penghubung mudah dioperasikan, dan menggunakan data base umum.

Program ini pertama kali dikembangkan oleh Brown, K., Shokooh, F., Abcede, H., dan Donner, G., pada Oper. Technol. Inc., Irvine, CA. USA., 1990 pada peper "Interactive simulation of Power System: ETAP Applications and Techniques".

Seperti disebutkan diatas, ETAP lebih ditekankan untuk menyelesaikan persoalan transien pada sistem tenaga listrik, walaupun demikian program ini juga dapat menyelesaikan persoalan tenaga listrik dalam keadaan tunak

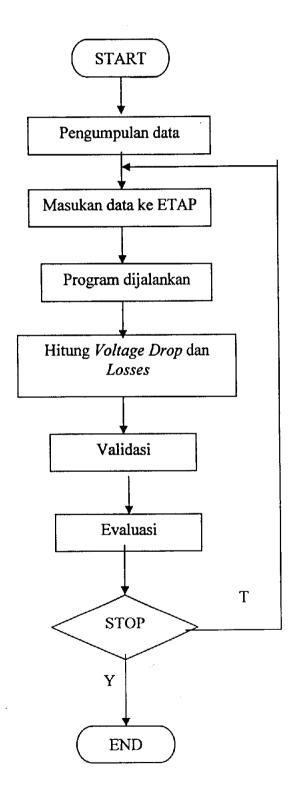
Menurut Brown (1990) ETAP dapat digunakan untuk menganalisis transien pada rangkaian yang mengandung parameter terkosentrasi (R, L, dan C), saluran transmisi dengan parameter terdistribusi, saluran yang transposisi atau saluran yang tidak ditransposisi. ETAP sangat baik digunakan untuk menganalisis transient pada operasi switching surge karena program ini menyediakan fasilitas

pemodelan untuk generator, Circuit Breaker (CB), transformator, MOV, dan pemodelan saluran transmisi baik untuk saluran yang tergantung frekuensi maupun tidak.

ETAP *Power Station* versi 4.0 adalah program yang dapat menganalisa semua grafik *electical transient* dan dapat dijalankan melalui *Microsoft Windows* 95, 98, NT 4.0, dan 2000 (NT 5.0). Susunan pada *Windows* NT menyediakan level kemampuan tertinggi untuk memenuhi permintaan aplikasi seperti analisa perhitungan pada jaringan yang besar/luas dan pemonitoran yang dikontrol oleh komputer dan aplikasi-aplikasi kontrol. ETAP *Power Station* versi 4.0 memungkinkan kinerja yang lebih cepat dengan menggunakan grafik *one-line diagram* dan sistem saluran kabel bawah tanah.

Program ETAP *Power Station* versi 4.0 telah didisain sesuai dengan 3 konsep seperti di bawah ini, yaitu :

- a. Operasi yang nyata (Virtual Reality Operation)
 Operasi program sama seperti sistem elektrik yang nyata. ETAP Power
 Station versi 4.0 tidak bekerja sama dengan konsep baru untuk membedakan penyusunan alat yang aman dari diagram one-line.
- b. Jumlah integrasi dari data (Total Integration of Data)
 ETAP Power Station versi 4.0 menggabungkan antara elemen sistem yang elektris, logis, bermesin, dan atribut-atribut dalam database yang sama.
- c. Kemudahan dalam pemasukkan data (Simplicity in Data Entry)


ETAP *Power Station* versi 4.0 menyimpan jejak setiap data secara detil dari masing-masing data elektrik. Data editor mempercepat pemasukkan data dengan membutuhkan data yang minimum untuk studi tertentu.

Dalam mencapai ini kita harus menyusun *property editor* pada tempat yang benar dan memasukkan data untuk setiap analisa atau disain dari tipe-tipe yang berbeda. Diagram *one-line* ETAP *Power Station* versi 4.0 mempunyai beberapa fitur yang dapat membantu dalam membuat atau mendisain jaringan-jaringan dengan kerumitan yang berbeda-beda.

Sebagai bagian dalam konsep database 3-D, ETAP Power Station versi 4.0 menyediakan pilihan yang beraneka ragam untuk menampilkan sistem elektris. Tampilan-tampilan ini disebut presentation. Pada tampilan-tampilan ini memungkinkan untuk mempunyai berbagai macam pandangan dari sebuah sistem untuk setiap analisa yang berbeda. Lokasi, ukuran, orientasi, dan simbol dari setiap elemen dapat berbeda-beda dalam setiap presentation.

Sebagai tambahan, protective devices (alat yang diproteksi) dan relay dapat ditampilkan atau disembunyikan. Fitur dari pada ETAP Power Station versi 4.0 yang paling dominan adalah jaringan campuran dan elemen motor. Jaringan campuran memperbolehkan untuk membuat grafik elemen jaringan pada jaringan itu sendiri dalam kedalaman tertentu atau yang diinginkan.

Diagram Alir Jalannya Penelitian

Gambar 3.1. Diagram Alir Jalanya Penelitian

3.1. Data Beban Penyulang G.I. Bandung Selatan

Data yang digunakan adalah data PLN Distribusi Jawa Barat, APJ Bandung Selatan periode bulan Juni tahun 2005.

Tabel 3.1. Data Beban Tiap Penyulang Periode Bulan Juni Tahun 2005

NO	Nama Penyulang	Kapasitas Trafo		CT (A)		Beban
		Ratio (Kv)	Daya (MVA)	Primer	Sekunder	(A)
1.	SBB	150/20	30	300	5	250
2.	SBC	150/20	60	300	5	160
3.	SBH	150/20	60	300	5	165
4.	SBK	150/20	60	300	5	85
5.	SBM	150/20	30	300	5	165
6.	SMB	150/20	30	400	5	170
7.	SPM	150/20	30	400	5	250
8.	SPU	150/20	60	400	5	195
9.	SPH	150/20	30	400	5	235
10.	SPP	150/20	30	400	5	235
11.	SSH	150/20	60	300	5	75
12.	SSK	150/20	60	300	5	140
13.	SSM	150/20	30	400	5	245
14.	ASRI	150/20	60	400	5	125
15.	BLED	150/20	60	400	5	120
16.	CMNG	150/20	60	400	5	115
17.	CPLH	150/20	60	400	5	280
18.	DGSI	150/20	60	400	5	185
19.	SRNG	150/20	60	400	5	280

Sumber: PLN Distribusi Jawa Barat, APJ Bandung Selatan

Setting penyulang adalah penyetelan arus maksimal pada penyulang dan jika terlewati rele akan bekerja mentripkan CB (*Circuit Breaker*) penyulang yang berbeban lebih.

3.2. Data Beban Penyulang dan Panjang Penyulang

Tabel 3.2. Data Beban Penyulang dan Panjang Penyulang

No.	Nama Penyulang	Beban (A)	Panjang Penyulang (kms)
1.	SBB (Selatan Banjaran Biru)	250	4,485
2.	SBM (Selatan Banjaran Merah)	165	7,477
3.	SPH (Selatan Pengtai Hijau)	235	6,371
4.	SPP (Selatan Pengtai Putih)	235	7,547
5.	SPM (Selatan Papirus Merah)	250	5,777
6.	DGSI (Desa Gandasoli)	185	10,176
7.	SRNG (Soreang)	280	7,503
8.	ASRI (Arjasari)	125	2,314
9.	CPLH (Cipolah)	280	8,610
10.	BLED (Bale Endah)	120	7,400
11.	CMNG (Cimaung)	115	5,987
12.	SSM (Selatan Soreang Merah)	245	14,958
13.	SSK (Selatan Soreang Kuning)	140	6,094
14.	SPU (Selatan Papirus Ungu)	195	4,560
15.	SBH (Selatan Banjaran Hijau)	165	10,850
16.	SMB (Selatan Malakasari Biru)	170	13,515
17.	SBK (Selatan Banjaran Kuning)	85	7,350
18.	SBC (Selatan Banjaran Coklat)	160	13,640
19.	SSH (Selatan Soreang Hijau)	75	5,500

Sumber: PLN Distribusi Jawa Barat, APJ Bandung Selatan

Pengukuran beban pada kondisi (waktu) beban tertinggi yaitu dilakukan antara pukul 17.00-22.00 WIB.

3.3. Data Konduktor

Tabel 3.3. Data Teknis Penghantar AAAC (A3C)

Penampang Nominal (mm²)	Jari-jari (mm)	Urat	GMR (mm)	Impedansi Urutan Positif (ohm/km)	Impedansi Urutan Nol (ohm/km)
150	6,9084	19	5,2365	0,2162 + j 0.3305	0,3631 + j 1,6180
185	7,6722	19	5,8155	0,1744 + j 0,3239	0,3224 + j 1,6114
240	8,7386	19	6,6238	0,1344 + j 0,3158	0,2824 + j 1,6033

Sumber: PLN Distribusi Jawa Barat, APJ Bandung Selatan

Tabel 3.4. Data Teknis Kabel AL

Penampang	R (ohm/km)	L (mH/km)	C (\mu F/km)	Impedansi Urutan	Impedansi
Nominal				Positif	Urutan Nol
(mm ²)				(ohm/km)	(ohm/km)
150	0,206	0,330	0,260	0,206 + j 0,104	0,356 + j 0,312
240	0,125	0,310	0,310	0,125 + j 0,097	0,275 + j 0,029
300	0,100	0,300	0,340	0,100 + j 0,094	0,250 + j 0,282

Sumber: PLN Distribusi Jawa Barat, APJ Bandung Selatan