BAB 3

GRUP DUAL

3.1 Grup Topologi

Definisi 3.1.1. [4] **Grup Topologi**. **Grup topologi** adalah suatu grup Γ dengan suatu topologi sedemikian sehingga pemetaan operasi $(x,y)\mapsto x\circ y:\Gamma\times\Gamma\to\Gamma$ dan invers $x\mapsto x^{-1}:\Gamma\to\Gamma$ merupakan fungsi kontinu.

Contoh 3.1.1. Himpunan bilangan kompleks \mathbb{C} dengan operasi penjumlahan biasa merupakan suatu grup, yaitu $(\mathbb{C}, +)$. Dengan topologi biasa pada \mathbb{C} , maka \mathbb{C} merupakan suatu grup topologi.

Bukti. Untuk menunjukkan kekontinuan dari operasi +, misalkan barisan $\{x_n\}$ dan $\{y_n\}$ merupakan sebarang barisan yang konvergen ke x dan y. Berdasarkan konsep barisan pada bilangan kompleks dapat diperoleh bahwa $x_n + y_n \to x + y$, dan karena untuk setiap barisan $\{x_n\}$ dan konstanta c berlaku

$$cx_n \to cx$$

maka dengan mengambil c=-1 diperoleh $-x_n\to -x$. Dengan demikian terbukti bahwa $(\mathbb{C},+)$ dengan topologi biasa merupakan suatu grup topologi.

Contoh 3.1.2. Grup perkalian $\mathbb{C}^{\times} := \mathbb{C} \setminus \{0\}$ dari bilangan kompleks tak nol dengan

topologi biasa juga membentuk grup topologi. Subgrup $\mathbb{T}=\{z\in\mathbb{C}:\|z\|=1\}$ dari \mathbb{C} juga membentuk suatu grup topologi.

3.2 Grup Diskrit dan Karakter pada Grup Diskrit

Definisi 3.2.1. [4] Grup diskrit. Grup diskrit adalah grup yang setiap subsetnya merupakan himpunan buka. Grup diskrit juga disebut sebagai grup tanpa topologi.

Definisi 3.2.2. [4] Karakter. Misalkan Γ merupakan grup abellian diskrit. Homomorfisma $\gamma: \Gamma \to \mathbb{T}$ di mana $\mathbb{T} = \{z \in \mathbb{C} : ||z|| = 1\}$, disebut sebuah karakter pada grup Γ. Himpunan semua karakter pada Γ ditulis sebagai $\operatorname{Hom}(\Gamma, \mathbb{T})$.

Contoh 3.2.1. Misalkan $(\mathbb{R},+)$ adalah sebuah grup aditif bilangan real. Dengan mendefinisikan $\gamma(x):=e^{ix}$, maka γ merupakan suatu karakter pada \mathbb{R} karena untuk setiap $x,y\in\mathbb{R}$ berlaku $\gamma(x+y)=e^{i(x+y)}=e^{ix}e^{iy}=\gamma(x)\gamma(y)$.

3.3 Grup Dual $\hat{\Gamma}$

Teorema 3.3.1. [4] Grup dual. Misalkan Γ merupakan grup abellian diskrit. Maka, $\operatorname{Hom}(\Gamma, \mathbb{T})$ dengan operasi perkalian titik-demi-titik, yaitu $((\varphi \cdot \psi)(x) = \varphi(x)\psi(x))$, membentuk suatu struktur grup yang disebut dengan grup dual dan dilambangkan dengan $\hat{\Gamma}$.

Bukti. 1. Sifat ketertutupan operasi "." pada $\hat{\Gamma}$. Misalkan $\varphi, \psi \in \hat{\Gamma}$, harus ditunjukkan bahwa $\varphi \cdot \psi \in \hat{\Gamma}$. Untuk membuktikan bahwa $\varphi \cdot \psi \in \hat{\Gamma}$, maka harus

ditunjukkan bahwa $(\varphi \cdot \psi)(x) \in \mathbb{T}$ dan $(\varphi \cdot \psi)$ suatu homomorfisma.

Perhatikan bahwa $(\varphi \cdot \psi)(x) = \varphi(x)\psi(x)$, untuk $x \in \Gamma$. Karena $\varphi(x) \in \mathbb{T}$ dan $\psi(x) \in \mathbb{T}$, maka $(\varphi \cdot \psi)(x) \in \mathbb{T}$.

Selanjutnya, untuk membuktikan bahwa $(\varphi \cdot \psi)$ suatu homomorfisma maka harus ditunjukkan bahwa $(\varphi \cdot \psi)(xy) = (\varphi \cdot \psi)(x)(\varphi \cdot \psi)(y)$. Misalkan $x,y \in \Gamma$, perhatikan bahwa

$$(arphi \cdot \psi)(xy) = arphi(xy)\psi(xy)$$

$$= [arphi(x)arphi(y)][\psi(x)\psi(y)]$$

$$= [arphi(x)\psi(x)][arphi(y)\psi(y)]$$

$$= (arphi \cdot \psi)(x)(arphi \cdot \psi)(y)$$

2. Sifat asosiatif "." Misalkan $\varphi, \psi, \phi \in \hat{\Gamma}$ dan $x \in \Gamma$. Harus ditunjukkan bahwa $(\varphi \cdot \psi) \cdot \phi = \varphi \cdot (\psi \cdot \phi).$

Perhatikan bahwa

$$[(\varphi \cdot \psi) \cdot \phi](x) = (\varphi \cdot \psi)(x)\phi(x)$$

$$= [\varphi(x)\psi(x)]\phi(x)$$

$$= \varphi(x)[\psi(x)\phi(x)]$$

$$= \varphi(x)(\psi \cdot \phi)(x)$$

$$= [\varphi \cdot (\psi \cdot \phi)](x),$$

untuk setiap $x \in \Gamma$. Jadi, terbukti bahwa $(\varphi \cdot \psi) \cdot \phi = \varphi \cdot (\psi \cdot \phi)$.

3. Terdapat elemen identitas pada grup $\hat{\Gamma}$. Pemetaan $\varepsilon: \Gamma \to \mathbb{T}$ dengan aturan $x \mapsto 1$, untuk setiap $x \in \Gamma$ adalah elemen identitas pada grup dual $\hat{\Gamma}$. ε merupakan homomorfisma karena $\varepsilon(xy) = 1 \cdot 1 = \varepsilon(x)\varepsilon(y)$ untuk setiap $x, y \in \Gamma$, dan juga merupakan elemen identitas pada grup $\hat{\Gamma}$ karena untuk sebarang $\gamma \in \hat{\Gamma}$ berlaku

$$(\varepsilon \cdot \gamma)(x) = \varepsilon(x)\gamma(x) = \gamma(x) = \gamma(x)\varepsilon(x) = (\gamma \cdot \varepsilon)(x),$$

untuk setiap $x \in \Gamma$.

4. Adanya elemen invers pada grup $\hat{\Gamma}$. Ambil sebarang $\gamma \in \hat{\Gamma}$. Dengan mendefinisikan $\gamma^{-1}(x) := \overline{\gamma(x)}$, konjugat dari γ , maka $\overline{\gamma} \in \hat{\Gamma}$, jadi $\gamma^{-1}\hat{\Gamma}$. Selanjutnya, karena untuk setiap $x \in \Gamma$

$$(\gamma \cdot \gamma^{-1})(x) = \gamma(x)\gamma^{-1}(x) = \gamma(x)\overline{\gamma}(x) = \|\gamma(x)\|^2 = 1$$

dan

$$(\gamma^{-1} \cdot \gamma)(x) = \gamma^{-1}(x)\gamma(x) = \overline{\gamma}(x)\gamma(x) = \|\gamma(x)\|^2 = 1,$$

maka $\gamma\cdot\gamma^{-1}=\gamma^{-1}\cdot\gamma=1$. Sehingga dapat disimpulkan bahwa untuk setiap $\gamma\in\hat{\Gamma}$ memiliki elemen invers.

3.4 Topologi pada Grup Dual $\hat{\Gamma}$

Grup $\hat{\Gamma}$ yang terdiri dari himpunan semua homomorfisma $\gamma:\Gamma\to\mathbb{T}$ dengan operasi perkalian titik-demi-titik, dapat dilengkapi dengan suatu topologi. Dengan memandang bahwa γ merupakan anggota dari ruang produk $\mathbb{T}^{\Gamma}:=\prod_{x\in\Gamma}\mathbb{T}$ yang juga merupakan ruang topologi, maka pemetaan $\gamma\mapsto (\gamma(x))_{x\in\Gamma}$ dari $\hat{\Gamma}$ ke \mathbb{T}^{Γ} akan memberikan topologi pada grup dual $\hat{\Gamma}$. Topologi ini adalah topologi kekonvergenan titik-demititik, yaitu

$$\gamma_{\lambda} \to \gamma \iff \gamma_{\lambda}(x) \to \gamma(x), \, \forall x \in \Gamma.$$

3.5 Grup Dual $\hat{\Gamma}$ Sebagai Grup Topologi

Teorema 3.5.1. [4] Misalkan Γ grup abellian diskrit dan $\hat{\Gamma}$ grup dual yang dilengkapi dengan topologi kekonvergenan titik-demi-titik. Maka, $\hat{\Gamma}$ adalah grup topologi.

Bukti. Untuk menunjukkan bahwa grup dual $\hat{\Gamma}$ merupakan grup topologi, harus ditunjukkan bahwa pemetaan $(\gamma, \chi) \mapsto \gamma \chi : \hat{\Gamma} \times \hat{\Gamma} \to \hat{\Gamma}$ dan $\gamma \mapsto \gamma^{-1} : \hat{\Gamma} \to \hat{\Gamma}$ adalah pemetaan yang kontinu.

Diberikan barisan (γ_n, χ_n) yang konvergen ke (γ, χ) , harus ditunjukkan bahwa barisan $(\gamma_n \chi_n)$ konvergen ke $\gamma \chi$.

Perhatikan bahwa (γ_n, χ_n) konvergen ke (γ, χ) berarti $\gamma_n \to \gamma$ dan $\chi_n \to \chi$. Demikian pula $\gamma_n \to \gamma \Leftrightarrow \gamma_n(x) \to \gamma(x)$ dan $\chi_n \to \chi \Leftrightarrow \chi_n(x) \to \chi(x)$, untuk setiap $x \in \Gamma$. Karena $\gamma_n(x) \to \gamma(x)$ dan $\chi_n(x) \to \chi(x)$ merupakan barisan bilangan kompleks, maka perkalian barisan tersebut akan konvergen ke perkalian nilai-nilai konvergennya, yaitu $\gamma_n(x)\chi_n(x) \to \gamma(x)\chi(x)$. Akan tetapi, $\gamma_n(x)\chi_n(x) \to \gamma(x)\chi(x)$, untuk setiap $x \in \Gamma$, jika dan hanya jika $\gamma_n\chi_n \to \gamma\chi$, sehingga menunjukkan bahwa pemetaan $(\gamma, \chi) \mapsto \gamma\chi$ merupakan pemetaan kontinu.

Diberikan barisan $\gamma_n \to \gamma$, harus ditunjukkan bahwa $\gamma_n^{-1} \to \gamma^{-1}$.

Misalkan $x \in \Gamma$, tulis $\gamma_n(x) = a_{\gamma_n} + ib_{\gamma_n}$ dan $\gamma_n = a_{\gamma} + ib_{\gamma}$. Perhatikan bahwa $\gamma_n \to \gamma$ jika dan hanya jika $\gamma_n(x) \to \gamma(x)$, untuk setiap $x \in \Gamma$. Karena $\gamma_n(x) \to \gamma(x)$ untuk setiap $x \in \Gamma$, maka berdasarkan teorema tentang barisan konvergen pada bilangan kompleks diperoleh $a_{\gamma_n} \to a_{\gamma}$ dan $b_{\gamma_n} \to b_{\gamma}$. Invers pada setiap anggota \mathbb{T} adalah konjugatnya, artinya $(\gamma_n(x))^{-1} = \overline{\gamma_n(x)} = a_{\gamma_n} - ib_{\gamma_n}$ dan $(\gamma(x))^{-1} = \overline{\gamma(x)} = a_{\gamma_n} - ib_{\gamma_n}$. Karena $a_{\gamma_n} \to a_{\gamma}$ dan $b_{\gamma_n} \to b_{\gamma}$, maka $(\gamma_n(x))^{-1} \to (\gamma(x))^{-1}$. Sedangkan $(\gamma_n(x))^{-1} \to (\gamma(x))^{-1}$, untuk tiap $x \in \Gamma$, jika dan hanya jika $\gamma_n^{-1} \to \gamma^{-1}$. Dengan demikian, pemetaan $\gamma \mapsto \gamma^{-1} : \hat{\Gamma} \to \hat{\Gamma}$ adalah kontinu.

.