BAB 3 METODOLOGI PENELITIAN

3.1 Lokasi Penelitian

Lokasi penelitian Proyek Pembangunan Jalan Tol Pematang Panggang – Kayu Agung Seksi 2, STA. 152+025 sampai dengan STA. 158+000 yang merupakan bagian dari Jalan Tol Sumatera, Provinsi Sumatera Selatan, Indonesia.

Gambar 3.1 Lokasi Penelitian

(Sumber : Materi Seminar Hutama Karya, 2018)

3.2 Waktu Penelitian

Waktu penelitian dilaksanakan pada bulan Februari sampai dengan bulan Agustus 2021 disajikan pada Tabel 3.1.

			Bulan																										
No.	o. Kegiatan		Feb	ruai	i		Ma	aret			Ap	oril			Μ	lei			Ju	ni			Jı	uli			Agu	istus	;
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Pengumpulan bahan referensi																												
2	Pengumpulan data sekunder Proyek																												
	Pembangunan Jalan Tol Pematang																												
	Panggang - Kayu Agung Seksi II																												
3	Analisis karakteristik tanah																												
4	Pemodelan PVD dan analisis smear zone																												
	pada Geostudio																												
5	Pemodelan Vacuum pada Geostudio																												
6	Analisis hasil penelitian																												
7	Pembahasan dan penyusunan laporan																												
8	Kesimpulan																												

 Tabel 3. 1
 Waktu Penelitian

3.3 Metode Penelitian

Metode penelitian yang digunakan adalah metode penelitian deskriptif. Metode deskriptif adalah suatu metode yang digunakan untuk menganalisis suatu hasil penelitian tetapi tidak digunakan untuk membuat kesimpulan yang lebih luas (Sugiyono, 2018).

Pada penelitian ini digunakan pendekatan kuantitatif. Kuantitatif diartikan sebagai metode penelitian yang berlandaskan pada filsafat positivisme, digunakan untuk meneliti pada populasi atau sampel tertentu, pengumpulan data menggunakan instrumen penelitian, analisis data bersifat kuantitatif/statistik, dengan tujuan untuk menguji hipotesis yang telah ditetapkan (Sugiyono, 2017:8).

Produk yang dihasilkan adalah alternatif pemodelan *vertical drains* menggunakan *vacuum preloading* dengan *software* Geostudio berdasarkan kondisi timbunan seperti perencanaan di lapangan yang diverifikasi berdasarkan hasil instrumen geoteknik di lapangan, selanjutnya dilakukan variasi *load ratio* untuk dianalisis pengaruhnya terhadap stabilitas dan deformasi lateral. Target pengguna adalah konsultan dan kontraktor.

3.4 Instrumen Penelitian

1. Peralatan Perangkat Keras (Hardware)

Alat yang digunakan oleh peneliti dari mulai pemodelan sampai dengan pengujian yaitu Laptop Asus A416JP – VIPS552 dengan spesifikasi prosesor intel core i5, NVDIA MX330, *Random Access Memory* (RAM) 4 GB, *Solid State Drive* (SSD) 512 GB.

2. Perangkat Lunak (Software)

Perangkat yang digunakan oleh peneliti yaitu Microsoft Office, AutoCAD dan Geostudio 2018 R2.

3.5 Populasi dan Sampling Technique

Populasi pada penelitian ini adalah informasi hasil penyelidikan tanah pada ruas STA. 153+950, STA. 154+300, dan STA. 155+350 dan gambar kerja perbaikan tanah yang akan digunakan pada Geostudio 2018 R2.

Teknik pengampilan sampel pada penelitian ini *purposive sampling* yaitu dengan cara mengambil subjek didasarkan dengan tujuan tertentu :

- 1. Kondisi tanah lunak dengan kedalaman tertentu meliputi lebar perbaikan tanah dan timbunan yang akan digunakan.
- 2. Analisis parameter sampel tanah.
- 3. Peninjauan model vertical drain dikombinasi dengan vacuum preloading.

3.6 Data dan Sumber Data

Jenis dan sumber data dalam penelitian ini disajikan pada Tabel 3.2.

No	Jenis Data	Sumber Data	Keterangan
1	Data penyelidikan tanah di	PT. Geotekindo	Data Cone
	lapangan		Penetration Test
2	Justifikasi Stabilitas	PT. Geotekindo	Model stabilitas
	Lereng		lereng timbunan

Tabel 3. 2 Jenis dan sumber data yang digunakan pada penelitian

No	Jenis Data	Sumber Data	Keterangan
3	Gambar cross section	PT. Geotekindo	Gambar kerja
	vacuum		timbunan dan vacuum
			preloading tinjauan
4	Data monitoring instrumen	PT. Geotekindo	Surface Settlement,
	lapangan		Vacuum Degree,
			Layered Settlement,
			Pore Water Pressure,
			Inclinometer
5	Laporan Kajian Geoteknik	PT. Waskita Karya	-
	Jalan Tol Pematang		
	Panggang – Kayu Agung		

3.7 Teknik Analisis

Data yang digunakan merupakan data sekunder. Data hasil penyelidikan *Cone Penetration Test* dan data laboratorium ditinjau pertama kali untuk menentukan stratifikasi tanah dan menentukan kedalaman tanah lunak kemudian penentuan parameter desain tanah menggunakan hasil uji laboratorium dan beberapa korelasi empiris, kemudian untuk mengetahui efek *smear zone*, pemodelan PVD pada Geostudio 2018 R2 dimodelkan dengan *multi drain* lalu diverifikasi berdasarkan jurnal hasil penelitian yang sudah terpublikasi, selanjutnya data *final cross section* perbaikan tanah dan tekanan *vacuum* dimodelkan ke dalam Geostudio 2018 R2 lalu diverifikasi berdasarkan data monitoring instrumen di lapangan. Selanjutnya dilakukan penambahan variasi *load ratio* untuk mengetahui pengaruh terhadap stabilitas dan deformasi lateral, untuk tekanan *vacuum* dimodelkan dengan *hydraulic boundary condition*. Data hasil monitoring lapangan meliputi data penurunan, tekanan air pori, dan deformasi lateral. Data tersebut di plot terhadap waktu untuk dibandingkan dengan hasil analisis pemodelan pada *software* Geostudio 2018 R2.

3.8 Kerangka Berpikir

Gambar 3. 2 Diagram Kerangka Berpikir

3.9 Diagram Alir

Gambar 3. 3 Diagram Alir

Selesai

3.10 Pemodelan dengan SIGMA/W

3.10.1 Pendahuluan

SIGMA/W pada GeoStudio 2018 R2 merupakan program yang dapat digunakan untuk menganalisis deformasi dan tegangan pada tanah. Berikut ini beberapa hal yang dapat dianalisis menggunakan SIGMA/W, antara lain :

- Analisis deformasi
- Konstruksi bertahap
- Tekanan air pori berlebih (*excess pore pressure*)
- Interaksi struktur dan tanah
- Analisis konsolidasi

3.10.2 Pemodelan dan Sifat Material pada SIGMA/W

Model material pada SIGMA/W dibagi menjadi :

- Model Linear-Elastik (*Elastic Linear Model*)
- Model Non Linear/Hiperbolik (*Hyperbolic E-B Model*)
- Model Elastik Plastik (Elastic Plastic Model)
- Model Cam Clay (Critical State Model/Hardening Elastic Plastic Model)

SIGMA/W membagi material ke dalam beberapa sifat. Untuk setiap model tanah sifatnya akan berbeda tergantung apakah akan menggunakan tegangan total (*Total Stress*), tegangan efektif tanpa perubahan tekanan (*Effective stress with no pressure change*), atau tegangan efektif dengan perubahan tekanan air pori (*Effective stress with pore-water pressure change*).

Pada kasus perbaikan tanah *vacuum preloading*, material tanah menggunakan Model Cam Clay dan memperhitungkan perubahan tekanan air pori, karena terdapat peristiwa konsolidasi.

3.10.3 Kondisi Batas (Boundary Condition) pada SIGMA/W

Kondisi batas yang bisa diterapkan pada SIGMA/W dapat dilihat pada Tabel 3.3 dan Tabel 3.4.

Туре	Value	Symbol X-Direction	Symbol Y-Direction	Description
(none)				none
Displacement	positive (+)	D+right	<mark>↓</mark> up	hollow arrow
Displacement	negative (-)	I eft	down	hollow arrow
Displacement	zero (0)	Þŧ	¥	hollow triangle
Force	positive (+)		Tup Up	solid arrow
Force	negative (-)	∳ ≪_left	down	solid arrow
Force	zero (0)			none
Spring	not applicable		up or down	springs
Spring	zero (0)			none
Rotation	zero (0)			hollow circle

Tabel 3. 3 Kondisi batas dan simbol yang digunakan

Туре	Value	Symbol	Description
(none)		none	
Normal Stress	positive (+)	, ,	line along edge, arrow perpendicular towards edge
Normal Stress	negative (-)	^	line along edge, arrow perpendicular away from edge
Tangential Stress	positive (+)	, * ,	line along edge along edge, arrow in counter-clockwise direction around an element
Tangential Stress	negative (-)	, ≛ ,	line along edge along edge, arrow in clockwise direction around an element
X-Stress	positive (+)]→	line along edge, arrow pointing right
X-Stress	negative (-)]-	line along edge, arrow pointing left
X-Stress	zero (0)	1	line along edge
Y-Stress	positive (+)	, <u>†</u> ,	line along edge, arrow pointing up
Y-Stress	negative (-)	, • • ,	line along edge, arrow pointing down
Y-Stress	zero (0)	•••	line along edge
Fluid Elevation	greater than min. edge y-coordinate]-	line along edge, arrow perpendicular towards edge
Fluid Elevation	less than min. edge y-coordinate	1	line along edge

Tabel 3. 4 Kondisi batas yang digunakan pada bagian tepi model

3.10.4 Tipe Analisis pada SIGMA/W

Tipe analisis pada SIGMA/W yaitu :

• Insitu

Sebagian besar analisis masalah membutuhkan tegangan awal (*intial stresses*) sebelum dilanjutkan ke tahap analisis pembebanan deformasi (*load deformation analysis*) atau tegangan-regangan coupled (*coupled stress-strain*) dan analisis rembesan (*seepage analysis*). *Initial stresses* hanya memberikan hasil dari gaya gravitasi dan kesetimbangan tanah tak terganggu.

• Stress Restribution

Analisis ini bisa digunakan untuk perhitungan tegangan yang lebih besar daripada kekuatan tanah (*over-stressed*). Umumnya terjadi pada model Linear Elastik dimana tegangan dihitung tanpa pertimbangan kekuatan tanah, lalu pada kasus infiltrasi air ke dalam tanah yang terdapat kenaikan tekanan air pori, sementara tegangan total tetap konstan. *Stress Restribution Analysis* adalah tipe analisis yang dapat digunakan untuk menganilisis stabilitas reduksi kekuatan (*strength reduction stability analysis*).

• Load/Deformation

Analisis Pembebanan/Deformasi adalah tipe analisis yang digunakan jika akan mengaplikasikan pembebanan dan mencari perubahan nilai tegangan dan pergeseran yang dihasilkan.

• Volume Change

Analisis yang dapat digunakan untuk menganilis hasil deformasi akibat adanya perubahan volume yang terjadi. Perubahan volume yang terjadi diakibatkan adanya perubahan air dan udara dari dalam tanah.

• Dynamic Deformation

Analisis Deformasi Dinamis (*Dynamic Deformation Analysis*) terintegrasi antara SIGMA/W dengan QUAKE/W yang dapat digunakan untuk menghitung deformasi akibat beban gempa. Dibutuhkan analisis dengan program QUAKE/W terlebih dahulu.

• Coupled Stress/PWP

Pada analisis *coupled* dibutuhkan tegangan-deformasi dan persamaan rembesan yang akan diselesaikan secara bersamaan. Dengan menggunakan analisis *coupled* maka tidak lagi dibutuhkan analisis SEEP/W dan SIGMA/W secara bersamaan, karena semua *hydraulic properties* dan *boundary condition* sudah dapat diaplikasikan langsung pada SIGMA/W. Pada analisis ini terdapat dua persamaan kesetimbangan (pergeseran) dan satu persamaan kontinuitas (aliran). Penyelesaian dilakukan secara bersamaan sehingga menghasilkan pergeseran dan perubahan tekanan air pori.

Pada studi ini analisis yang digunakan yaitu Coupled Stress/PWP.

3.10.5 Langkah-langkah Pemodelan Menggunakan SIGMA/W

Sebelum melakukan input data, maka terlebih dahulu masuk ke program GeoStudio 2018 R2.

Gambar 3. 4 Program GeoStudio 2018 R2

Untuk memulai, pilih New lalu klik Create.

🚱 GeoStudio 2018 R2		
File Edit View Window Help		
🗋 😂 🗟 🚔 🐚 🐂 🤊 • (* • 🗧	a 2	
GeoStudio 2018 R2	Best available license	
🕑 New	Open	
Select Template	Recent Projects	
Imperial ~	Sew New	? ×
Select Analysis	New project using:	
SLOPE/W	Imperial	This template can be used to create an empty project
↓ SEEP/W	Imperial - A3 Imperial - A4 Imperial - Ledger Imperial - Letter	(US Customary) units.
SIGMA/W	Metric Motric - A2	
1 QUAKE/W	Metric - A4 Metric - Ledger Metric - Letter	
TEMP/W		
> CTRAN/W	Create From Existing File	Create Cancel
🔀 AIR/W	FULL MODEL PPKA - edit air pori lagi.gs	3Z

Gambar 3. 5 Membuat Data Baru

Sebelum ke tahap *Define Analysis*, klik *close* terlebih dahulu, lalu lakukan pengaturan *grid, units and scale* sesuai dengan pemodelan yang akan dibuat.

ime:	sec 🔻	Mass:		kg	-	
ength:	m 🔻	Force:		kN	•	
emperature:	► 3°	Energy:		J	•	
rived Units						
Only show modified d	isnlav units					
	ispidy units					
Reset						
Category	Units	^	Choose the ur	nits to be displa	ayed :	
Acceleration	m/sec ²		Time			_
Air Mass	kg		I Ime:			*
Air Mace Flux	kg/sec/m ²		Length:			-
All Muss Flux			_			_
Air Mass Rate	kg/sec					-
Air Mass Rate Air Volume	kg/sec m³		Temperature:			
Air Mass Flux Air Mass Rate Air Volume Air Volume Flux	kg/sec m³ m³/sec/m²		Temperature:			-
Air Mass Rate Air Volume Air Volume Flux Air Volume Rate	kg/sec m ³ m ³ /sec/m ² m ³ /sec		Mass:			*
Air Mass Rate Air Volume Air Volume Flux Air Volume Rate Area	kg/sec m ³ m ³ /sec/m ² m ³ /sec m ²		Temperature: Mass: Force:			*
Air Mass Rate Air Volume Air Volume Flux Air Volume Rate Area Climate Volume Flux	kg/sec m ³ m ³ /sec/m ² m ² m ³ /sec/m ²		Temperature: Mass: Force:			*
Air Mass Rate Air Volume Air Volume Flux Air Volume Rate Area Climate Volume Flux Compressibility	kg/sec m ³ m ³ /sec/m ² m ³ /sec m ³ /sec/m ² /kPa		Temperature: Mass: Force: Energy:			* * *
Air Mass Flax Air Mass Rate Air Volume Air Volume Flux Air Volume Rate Area Climate Volume Flux Compressibility Concentration	kg/sec m ³ m ³ /sec/m ² m ³ /sec/m ² /kPa ko/m ³		Temperature: Mass: Force: Energy:			* * *

Gambar 3. 6 Pengaturan units pada SIGMA/W

Grid	I ? X					
Grid spacing						
X:	0.25 m					
Y: 0.25 m						
Displa Snap	ay grid to grid ay axis lines					
	Close					

Gambar 3. 7 Pengaturan grid pada SIGMA/W

Define Scale	? ×
Reference scale:	1: 200
	Close

Gambar 3. 8 Pengaturan scale pada SIGMA/W

1. Define Analyses

Pada tahap ini kita menentukan analisis apa yang akan digunakan. Studi ini menggunakan dua tipe analisis yaitu *Insitu* dan *Coupled Stress/PWP*. Tahap pertama analisis kondisi initial sebelum penerapan *vacuum* dan penentuan muka air tanah. Lalu dilanjutkan dengan tahap aktif *vacuum* dan penambahan timbunan bertahap.

Oefine Analyses		- 🗆 X
Analyses: ∆dd Delete → FULL MODEL PFKA khks 10 → → □ → □	Name: B.Fill12 (4.3m) Description: Parent: B.Fill11 (4.1m) Analysis Type: Coupled Stress/PWP Settings Convergence Time Advanced Exclude deformation and cumulative values from previous analyses. bitbl Ctops Conditions from: Parent Analysis	↓ ↓
	Utital Stress Conditions from: Parent Analysis if it is SIGMA/W or QUAKE/W. Initial PWP Conditions from: Parent Analysis	Time: (last)
	Uses results from the parent analysis if it is SEEP/W, SIGMA/W or QUAR Unit Weight of Water: 9.807 kl/m ³	e/w.
Undo 💌 Redo 💌		Close

Gambar 3. 9 Penentuan Analysis Type pada SIGMA/W

2. Menggambar Geometri Tanah dan Region

Membuat geometri model tanah sesuai dengan data *cross section* yang sudah ditentukan menggunakan *tools* yang ada pada *toolbar Draw*.

Gambar 3. 10 Geometri Model Tanah pada SIGMA/W

3. Define Materials

Tahap selanjutnya adalah *input* material tanah, pilih *Define* lalu klik *Materials*. Kategori material (*Material Category*) pada setiap lapisan tanah, ditentukan sebagai berikut :

a. Timbunan

Material timbunan menggunakan kategori material *Total Stress Parameter* dengan *material model Elastic-Plastic (Total)*.

Define Materials							×
Materials							
Name	^			Color	^	<u>A</u> dd	1
Smeared Zone - Lemp	ung Lunak						
Smeared Zone - Platfor	rm					Delete	
Undisturbed Zone - Len	nnung Lunak						
Undisturbed Zone - Len	npung Medium						
Undisturbed Zone - Len	npung Sangat Lunak					A	
					~	Assigned.	•••
lame: Timbupap			Color:	Cat			
Timbunan				<u>5</u> et			
Stress							
Material Category:	Total Stress Parameters	~					
Material Model:	Elastic-Plastic (Total)	~					
Total E-Modulus —							
Constant:	10,000 kPa						
O Function:	(none)	~					
Total Cohesion —							
Constant:	30 kPa						
O Function:	(none)	~					
Unit Weight:	16 kN/m ³	Total Phi:	0 °				
Poisson's Ratio:	0.35	Dilation Angle:	0 °				
Specify Insitu Ko:	0.53846154						
Undo 💌 Re	edo 🔻	Show lege	end	Propertie	es	Close	

Gambar 3. 11 Material Properties Timbunan SIGMA/W

b. Sand Platform

Material *sand platform* menggunakan kategori material *Total Stress Parameter* dengan *material model Elastic-Plastic (Total)*.

Oefine Materials						\times
Materials						
Name Platform Smeared Zone - Lempung I Smeared Zone - Platform Timbunan Undisturbed Zone - Lempun Undisturbed Zone - Lempun	Sangat Lunak Lunak Ig Lunak Ig Medium Ig Sangat Lunak			Color	<u>A</u> dd Delete Assigned	···
Name: Platform Stress Material Category: Tot	al Stress Parameters	v	Color:	<u>S</u> et		
Material Model: Ela: Total E-Modulus © Constant: ○ Function:	stic-Plastic (Total) 30,000 kPa (none)	v ~				
Total Cohesion Constant: Function: Unit Weight: Poisson's Ratio: Specify Insitu Ko:	10 kPa (none) 16 kN/m ³ 0.35 0.53846154	Total Phi: Dilation Angle:	30 °			
Undo 💌 Redo	-	Show le	gend	Properties	Close	

Gambar 3. 12 Material Properties Sand Platform SIGMA/W

c. Lempung (Sangat Lunak)

Material lempung dengan konsistensi sangat lunak menggunakan kategori material *Effective Parameters with PWP Change* dengan *material Soft Clay* (*MCC with PWP Change*). Material ini membutuhkan input *Hydraulic Properties* seperti *Volume Water Content Function*, *Hydraulic Conductivity* (Nilai permeabilitas), dan *Anisotropy Ky'/Kx' Ratio*.

Untuk fungsi *volume water content* dilakukan *estimate* dengan metode *sample function* dan memasukkan *Saturated WC* (kadar air) dari pengujian laboratorium serta nilai kompresibilitas tanah. Nilai *ratio Ky'/Kx'* sebesar 0,5.

Gambar 3. 13 Volumetric Water Content Function Lempung (Sangat Lunak)

Untuk nilai *Hydraulic Conductivity* (Nilai permeabilitas) material dengan input permeabilitas *plane strain* kondisi *undisturbed* dan melakukan *estimate* menggunakan metode *Fredlund and Xing* lalu memasukkan fungsi VWC yang telah dibuat sebelumnya.

Gambar 3. 14 Hydraulic Conductivity Lempung (Sangat Lunak)

Lalu masukkan Hydraulic Properties yang telah dibuat pada Material tanah.

Define Materials									×
Materials									
Name Smeared Zone - Lempt Smeared Zone - Platfor Timbunan Undisturbed Zone - Ler Undisturbed Zone - Ler Undisturbed Zone - Ler	ung Lu rm npung npung npung	ınak Lunak Medium Sangat Li	ınak				Color ^	<u>A</u> dd Delet	e
Namo						Color	~	Assigne	:d
Undisturbed Zone - Len	npung	Sangat Lu	inak				<u>S</u> et		
Stress									
Material Category:	Effec	tive Paran	neters w/ PV	VP Change	\sim				
Material Model:	Soft	Clay (MCC	w/ PWP Ch	iange)	\sim				
O.C. Ratio:		2		Init. Void	Ratio:	1.2			
Poisson's Ratio':		0.35		Unit Weig	ght:	16.67	7 kN/m³		
Specify Insitu Ko:		0.538461	54	Mu:		0.941	106132797		
Lambda:		0.096		Phi':		24 °			
Kappa:		0.019							
Hydraulic Properties									
Vol. Water Conter	nt Fn:		Lempung S	angat Luna	ik -	~			
Hyd. Conductivity	Fn:		Lempung S	angat Luna	ik :	~			
Anisotropy Ky'/Kx'	Ratio	e i	0.5		Rotation:	0 °			
Hyd. K Modifier Fr	n:		(none)			~			
Load Response Ra	atio:		1						
Undo 💌 Re	edo	 v			Show le	gend	Properties	Close	•

Gambar 3. 15 Material Properties Lempung (Sangat Lunak) SIGMA/W

Untuk input *Hydraulic Conductivity* pada tanah *smeared zone* menggunakan permeabilitas *plane strain* kondisi *smeared*.

Define Materials					\Box ×
Materials					
Name Hame Platform Smeared Zone - Lempung Smeared Zone - Platform Timbunan Undisturbed Zone - Lempu Name: Smeared Zone - Lempung	g Sangat Lunak j Lunak ung Lunak ung Medium g Sangat Lunak		Cold	Color A	Add Delete Assigned
Stress Material Category: Ef Material Model: Se	fective Parameters oft Clay (MCC w/ PV	w/ PWP Change \sim VP Change) \sim			
O.C. Ratio: Poisson's Ratio': Specify Insitu Ko: Lambda: Kappa: Hydraulic Properties - Vol. Water Content F Hyd. Conductivity Fn: Anisotropy Ky/KX* Ra Hyd. K Modifier Fn: Load Response Ratio	2 0.35 0.53846154 0.096 0.019 :	Init. Void Ratio: Unit Weight: Mu: Phi ¹ : ung Sangat Lunak = kh/ks 10 Lempung Sangat 	1.2 16.6 0.94 24 ° · 0 ° ·	7 kJ(m ³) 106132797	
Undo 💌 Redo		Show	legend	Properties	Close

Gambar 3. 16 Material Properties Lempung (Sangat Lunak) Smeared Zone

d. Lempung (Lunak)

Material lempung dengan konsistensi lunak menggunakan kategori material *Effective Parameters with PWP Change* dengan *material Soft Clay (MCC with PWP Change*). Material ini membutuhkan input *Hydraulic Properties*. Untuk fungsi *volume water content* dilakukan *estimate* dengan metode *sample function* dan memasukkan *Saturated WC* (kadar air) dari pengujian laboratorium serta nilai kompresibilitas tanah. Nilai *ratio Ky'/Kx'* sebesar 0,5.

Gambar 3. 17 Volumetric Water Content Function Lempung (Lunak)

Untuk nilai *Hydraulic Conductivity* (Nilai permeabilitas) material dengan input permeabilitas *plane strain* kondisi *undisturbed* dan melakukan *estimate* menggunakan metode *Fredlund and Xing* lalu memasukkan fungsi VWC yang telah dibuat sebelumnya.

Gambar 3. 18 Hydraulic Conductivity Lempung (Sangat Lunak)

Lalu masukkan Hydraulic Properties yang telah dibuat pada Material tanah.

Define Materials									×
Materials									
Name ^ Smeared Zone - Lempung Lunak Smeared Zone - Platform Timbunan					Color	^	<u>A</u> dd Delet	▼ e	
Undisturbed Zone - Len	Undisturbed Zone - Lempung Lunak								
Undisturbed Zone - Len Undisturbed Zone - Len	npung Medium npung Sangat I	unak					~	Assigne	d
Name:					Colo	r:			
Undisturbed Zone - Len	npung Lunak					<u>S</u> et			
Stress									
Material Category:	Effective Para	meters v	v/ PWP Change	\sim					
Material Model:	Soft Clay (MC	C w/ PW	(P Change)	\sim					
O.C. Ratio:	2		Init. Voi	Ratio:	1.1				
Poisson's Ratio':	0.35		Unit Wei	ght:	16.6	7 kN/m³			
Specify Insitu Ko:	0.53846	154	Mu:		0.98	383158877			
Lambda:	0.208		Phi':		25 °				
Kappa:	0.042								
Hydraulic Properties									
Vol. Water Conter	nt Fn:	Lempu	ing Lunak		~				
Hyd. Conductivity	Fn:	Lempu	ung Lunak		~				
Anisotropy Ky'/Kx'	Ratio:	0.5		Rotation:	0 °				
Hyd. K Modifier Fr	:	(none))		~				
Load Response Ra	atio:	1							
Lists In D	- L - L					Description		Class	

Gambar 3. 19 Material Properties Lempung (Sangat Lunak) SIGMA/W

Untuk input *Hydraulic Conductivity* pada tanah *smeared zone* menggunakan permeabilitas *plane strain* kondisi *smeared*.

Define Materials								×
/aterials								
Name		^			Color	^	Add	
Smeared Zone - Lemp	ung Lunak							
Smeared Zone - Platfo	rm						Delet	е
Timbunan								
Undisturbed Zone - Ler	npung Lunak							
Undisturbed Zone - Ler	npung Medium							
Undisturbed Zone - Ler	npung Sangat	Lunak				~	Assigne	d
lame:				Colo	or:			
Smeared Zone - Lempu	ing Lunak				<u>S</u> et			
Stress								
Material Category:	Effective Para	meters w/	' PWP Change \sim					
Material Model	Collection (MC		(here)					
	Soft Clay (MC	CW/ PWP	change) V					
O.C. Ratio:	2		Init, Void Ratio:	1.1				
	-							
Poisson's Ratio':	0.35		Unit Weight:	16.6	7 kN/m³			
Specify Insitu Ko:	0.53846	154	Mu:	0.98	383158877			
Lambda:	0.208		Phi':	25 °				
Kappa:	0.042							
Hydraulic Properties								
Vol. Water Conter	nt Fn:	Lempun	g Lunak	×	1			
Hyd. Conductivity	Fn:	k'hp = k	h/ks 10 Lempung Lunak	×	1			
Anisotropy Ky ¹ /Kx ¹	Ratio:	0.5	Rotation	0 •				
Hvd. K Modifier Fr	1:	(none)		×	1			
		(1			
Load Response Ra	atio:	1						
Units In D	ata las				Descentio		Char	
Undo 💌 Re	ago 👘		Show	legend	Propertie	es	Close	•

Gambar 3. 20 Material Properties Lempung (Sangat Lunak) Smeared Zone

e. Lempung (Medium/Teguh)

Material lempung dengan konsistensi teguh/medium menggunakan kategori material *Effective Parameters with PWP Change* dengan *material Soft Clay* (*MCC with PWP Change*). Material ini membutuhkan input *Hydraulic Properties*.

Untuk fungsi *volume water content* dilakukan *estimate* dengan metode *sample function* dan memasukkan *Saturated WC* (kadar air) dari pengujian laboratorium serta nilai kompresibilitas tanah. Nilai *ratio Ky'/Kx'* sebesar 0,5.

Gambar 3. 21 Volumetric Water Content Function Lempung (Medium)

Untuk nilai *Hydraulic Conductivity* (Nilai permeabilitas) material dengan input permeabilitas *plane strain* kondisi *undisturbed* dan melakukan *estimate* menggunakan metode *Fredlund and Xing* lalu memasukkan fungsi VWC yang telah dibuat sebelumnya.

Gambar 3. 22 Hydraulic Conductivity Lempung (Medium)

Lalu masukkan Hydraulic Properties yang telah dibuat pada Material tanah.

Define Materials						
Materials						
Name Smeared Zone - Lempu Smeared Zone - Platfor Timbunan Undisturbed Zone - Lem Undisturbed Zone - Lem	ng Lunak m npung Lunak npung Medium npung Sangat Li	unak			Color	Add ▼ Delete
Name:				Color	1	
Undisturbed Zone - Lem	pung Medium				<u>S</u> et	
Stress						
Material Category:	Effective Paran	neters w/ PWP Chi	ange 🗸			
Material Model:	Soft Clay (MCC	w/ PWP Change)	\sim			
O.C. Ratio:	5	Init.	Void Ratio:	1.04		
Poisson's Ratio':	0.43	Unit	Weight:	18 kN	l/m³	
Specify Insitu Ko:	0.754385	i96 Mu:		1.026	77906576	
Lambda:	0.167	Phi		26 °		
Kappa:	0.033					
Hydraulic Properties						
Vol. Water Conten	t Fn:	Lempung Medium	ı	~		
Hyd. Conductivity F	÷n:	Lempung Medium	1	~		
Anisotropy Ky'/Kx'	Ratio:	0.5	Rotation:	0 °		
Hyd. K Modifier Fn	:	(none)		×		
Load Response Ra	tio:	1				
				-		
Undo 💌 Re	do 💌		Show I	egend	Properties	Close

Gambar 3. 23 Material Properties Lempung (Medium) SIGMA/W

4. Define Boundary Condition

Kondisi batas pada SIGMA/W pada studi ini yaitu sebagai berikut.

Define Boundary (Conditions		? ×
BC Category:	All	\sim	
All Boundary Conditions			
Name	Category	Color	<u>A</u> dd 👻
Drainage	Hydraulic		
Fixed X	Stress/Strain		Delete
Fixed X/Y	Stress/Strain		
PVD	Hydraulic		
Vacuum	Hydraulic		
Vacuum reduksi 60%	Hydraulic		Accienced
Vacuum reduksi 85%	Hydraulic		Assigned
Zero Pressure	Hydraulic		
Zero Rotation	Rotation		

Gambar 3. 24 Boundary Condition SIGMA/W

Kategori Stress/Strain :

- *Fixed X*, untuk mengunci kondisi batas arah horizontal (X) sehingga tidak terjadi pergeseran arah X.
- *Fixed X/Y*, untuk mengunci kondisi batas arah horizontal (X) dan vertikal (Y) sehingga tidak terjadi pergesern arah horizontal maupun vertikal.

Kategori Hydraulic :

• *Vacuum*, tekanan *vacuum* dimodelkan dengan fungsi negatif *water total head* disesuaikan dengan nilai *vacuum gauge*.

Gambar 3. 25 Boundary Condition Tekanan Vacuum

- *Vacuum reduksi 85%*, dari fungsi tekanan *vacuum* (Gambar 3.25), nilai *water total head* direduksi sebesar 85%.
- *Vacuum reduksi 60%*, dari fungsi tekanan *vacuum* (Gambar 3.25), nilai *water total head* direduksi sebesar 60%.
- *PVD*, untuk kondisi batas ini merupakan tekanan *water total head constant* 0 m, untuk memodelkan tekanan *vacuum* yang telah dimatikan.

5. Draw Material pada Model

Dari penggambaran geometri dan region sesuai data *cross section*, kemudian pilih *toolbar Draw* lalu klik *materials*. Selanjutnya pilih *material properties* tanah yang telah dibuat sebelumnya, dan inputkan ke area tersebut. SIGMA/W akan memberi warna pada setiap area sesuai dengan warna material tersebut.

Gambar 3. 26 Model setelah diinput material

6. Draw Boundary Conditions pada Model

Selanjutnya adalah menentukan kondisi batas *vacuum* pada permukaan *sand platform* dan di sepanjang PVD. Di sepanjang PVD kondisi batas *vacuum* diinputkan yang telah tereduksi 85% dan 60%. Pada bagian kiri dan kanan menggunakan kondisi batas *Fixed X* dan bagian bawah menggunakan *Fixed X/Y*.

Gambar 3. 27 Model setelah diinput boundary conditions

7. Draw Mesh Properties

Selanjutnya geometri harus dibagi-bagi menjadi elemen-elemen yang lebih kecil untuk memudahkan perhitungan. Elemen dan hasil *mesh* dapat berbentuk segitiga ataupun persegi, besarnya pembagian elemen dapat dipilih secara manual.

8. Solve Analysis

Sebelum melakukan analisis pemodelan harus terlebih dahulu disimpan (*save*), setelah itu bisa dilakukan analisis untuk mendapatkan hasil penurunan, perubahan tekanan air pori, dan deformasi lateral.

Solve Manager	д 🔀
🤣 Sta <u>r</u> t 💌 🔗 Stop	Q
Analysis Name	Status
🗹 💎 Insitu	Solved 08/02/2021 11:24:20 PM
🗹 😼 Platform	Solved 08/02/2021 11:27:02 PM
🗹 😼 Vacuum start	Solved 08/02/2021 11:30:56 PM
🗹 😼 B.Fill1 (2.1m)	Solved 08/02/2021 11:35:04 PM
🗹 😼 B.Fill2 (2.3m)	Solved 08/02/2021 11:35:48 PM
🗹 😼 B.Fill3 (2.5m)	Solved 08/02/2021 11:36:44 PM
🗹 😼 B.Fill4 (2.7m)	Solved 08/02/2021 11:41:52 PM
🗹 😼 B.Fill5 (2.9m)	Solved 08/02/2021 11:42:08 PM
🗹 😼 B.Fill6 (3.1m)	Solved 08/02/2021 11:42:28 PM
🗹 😼 B.Fill7 (3.3m)	Solved 08/02/2021 11:42:38 PM
🗹 😼 B.Fill8 (3.5m)	Solved 08/02/2021 11:42:50 PM
🗹 😼 B.Fill9 (3.7m)	Solved 08/02/2021 11:43:00 PM
🗹 😼 B.Fill10 (3.9m)	Solved 08/02/2021 11:43:06 PM
🗹 😼 B.Fill11 (4.1m)	Solved 08/02/2021 11:43:14 PM
🗹 😼 B.Fill12 (4.3m)	Solved 08/02/2021 11:44:12 PM

Gambar 3. 28 Solve Analysis

9. Menampilkan Hasil

Setelah analisis selesai dilakukan, maka hasil dapat dikeluarkan. Untuk memperoleh kontur klik *Draw Contour* lalu pilih kontur apa saja yang diperlukan. Untuk memperoleh hasil berupa grafik maka klik *Graph*.

Gambar 3. 29 Menampilkan *output* kontur dan grafik

3.11 Program SLOPE/W

3.11.1 Pendahuluan

SLOPE/W pada GeoStudio 2018 R2 merupakan program yang dapat digunakan untuk menganalisis kestabilan lereng dengan metode keseimbangan terbatas (*limit equilibrium*). Berikut ini beberapa hal yang dapat dianalisis menggunakan SLOPE/W, antara lain :

- Menghitung faktor kemanan lereng yang bertanah heterogeny di atas tanah keras (*bedrock*), dengan lapisan lempung.
- Menghitung faktor keamanan dari lereng dengan beban luar dan perkuatan lereng dengan angker atau geotekstil.
- Kondisi tekanan air pori dalam tanah yang kompleks.
- Menganalisis stabilitas dengan tekanan batas elemen.
- Memasukkan data tekanan lereng dari analisis batas stabilitas elemen SIGMA/W ke SLOPE/W untuk mempermudah.
- Menghitung faktor kemanan tiap potongan, sebaik perhitungan faktor keamanan seluruh longsoran.

3.11.2 Metode dan Sifat Material pada SLOPE/W

Berikiut ini adalah metode keseimbangan batas yang dapat digunakan pada SLOPE/W:

- Morgenstern-Price
- Spencer
- Corps of Engineer
- Lowe-Karafiath
- Janbu Generalized
- Sarma (vertical slices only)
- Bishop
- Janbu
- Ordinary

Model material pada SLOPE/W dapat dilihat pada Tabel 3.5.

Strength Model	Basic Parameter
Mohr-Coloumb	Unit weight, cohesion, phi
Undrained (phi=0)	Unit weight, cohesion
No strength (e.g. Water)	Unit weight
Bedrock (Impenetrable)	-
Bilinear	Unit weight, cohesion, phi1, phi2, normal
S = f (depth)	Unit weight, C-top of layer, rate of increase, C-maximum
S = f (datum)	Unit weight, C-datum, rate of increase, C-maximum, datum (elevation)
Anisotropic Stength	Unit weight, C-horizontal, C-vertikal, phi-horizontal, phi-vertical
Shear/Normal Fn.	Unit weight, function #
Anisotropic Fn.	Unit weight, cohesion, phi, C-anisotropic Fn, phi- anisotropic Fn
Combined, $S = f$ (depth)	Unit weight, phi, C-top of layer, C rate increase, Cu-top of layer, Cu rate increase, C/Cu Ratio
Combined, S – f (datum)	Unit weight, phi, C-datum, C rate increase, Cu-datum, Cu rate increase, C/Cu Ratio, datum (elevation)
S = f (overburden)	Unit weight, tau/sigma ratio

Tabel 3. 5 Stength Material Model

Pada studi ini, material tanah menggunakan Model Mohr Columb.

3.11.3 Langkah-langkah Pemodelan Menggunakan SLOPE/W

Sebelum melakukan input data, maka terlebih dahulu lakukan langkah seperti pada Gambar 3.4 - 3.8 mengatur *grid*, *units and scale* sesuai dengan pemodelan yang akan dibuat.

1. Define Analyses

Pada tahap ini kita menentukan analisis apa yang akan digunakan. Studi ini menggunakan tipe analisis *limit equilibrium* metode Ordinary. Untuk kondisi *pore water pressure* diambil dari *parent analysis* program SIGMA/W sebelumnya. Untuk *slip surface* pada model ini menggunakan *slip surface option* dengan *entry and exit*, dimana *entry* merupakan awal bidang longsoran dan *exit* merupakan akhir dari bidang longsoran. Dalam model ini tidak diperhitungkan *tension crack*.

Define Analyses						<
Analyses:	Delete	Name:	Slope Stability	Description:		
E- Load Ratio 1.54 Timbunan 2.7 m		Parent:	Sub-base+Pavement ~		~	
	Ana	lysis Type:	Ordinary	~		
□ - • Vacuum start [0-50 d] □ - • • B.Fill1 (2.1m) [50-109 d]	Sett	ings Slip Surface	Distribution Advanced			
	PW	/P Conditions from:	Parent Analysis	 Time: (last) ~	
B.Fill4 (2.7m) [132-212 d]		Uses results from	the parent analysis.			
B.Fill6 (3.1m) [214-216 d]						
⊟- G B.Fill8 (3.5m) [218-220 d] ⊟- G B.Fill9 (3.7m) [220-222 d]	Sta	ged Pseudo-static	analysis:			
	(n	one)	~			
B.Fill12 (4.3m) [224-240 d]	Pa	tial Factors:				
Sub-base+Pavement [270-	300 d] (n	one)	×			
Steady-State Seepage [0 d]	1) Un	it Weight of Water:	9.807 kN/m ³			

Gambar 3. 30 Penentuan Analysis Type pada SLOPE/W

Name: Parent: Analysis Type:	Slope Stability Description: Sub-base+Pavement Ordinary
Settings Slip Surface	Distribution Advanced
Direction of movement	t
Left to right	◯ Right to left □ Use passive mode
Slip Surface Option	
Entry and Exit	No. of critical slip surfaces to store:
Specify radiu	is tangent lines
Grid and Radius	Optimize critical slip surface location
Block Specified	
Do not cross	block slip surface lines
Fully Specified	
Critical Slip Surf	aces from:
Tension Crack Option	
No tension crack	Water in Tension Crack
O Tension crack ar	rgle: 0 °
◯ Tension crack lir	Unit weight or water: 9.807 kN/m ³

Gambar 3. 31 Penentuan Slip Surface pada SLOPE/W

2. Menggambar Geometri Tanah dan Region

Membuat geometri model tanah sesuai dengan data *cross section* yang sudah ditentukan menggunakan *tools* yang ada pada *toolbar Draw*.

Gambar 3. 32 Geometri Model Tanah pada SLOPE/W

3. Define Materials

Tahap selanjutnya adalah *input* material tanah, pilih *Define* lalu klik *Materials*. Kategori material (*Material Category*) pada setiap lapisan tanah, ditentukan sebagai berikut :

a. Timbunan

Material timbunan menggunakan material model Mohr-Coloumb.

Optime Materials		
Materials		
Name	Color ^	<u>A</u> dd 👻
Undisturbed Zone - Lempung Sangat Lunak		
Undisturbed Zone - Lempung Medium		Delete
Undisturbed Zone - Lempung Lunak		
Timbunan		
Sub base		
Smeared Zone - Lempung Sangat Lunak		
Smeared Zone - Lempung Lunak	×	Assigned
Name: (Color:	
Timbunan	Set	
Unit Weight: Cohesion': 16 klV/m ³ 30 kPa Phi: 0 °		
Undo 🔻 Redo 💌 Show legend	Properties	Close

Gambar 3. 33 Material Properties Timbunan SLOPE/W

b. Sand Platform

Material sand platform menggunakan kategori material model Mohr-Coloumb.

Define Materials		
Materials		
Name	Color ^	Add 👻
Sub base		
Smeared Zone - Lempung Sangat Lunak		Delete
Smeared Zone - Lempung Lunak		
Platform smear		
Platform		
Pavement	~	Assigned
Name:	Color:	
Platform	<u>S</u> et	
Slone Stability		
Material Model: Mohr-Coulomb		
Basic Suction R Envelope Liquefaction Advanced		
Unit Weight: Cohesion':		
16 kN/m ³ 10 kPa		
Phi:		
30 °		

Gambar 3. 34 Material Properties Sand Platform SLOPE/W

c. Lempung (Sangat Lunak)

Material lempung dengan konsistensi sangat lunak menggunakan *Total Stress Parameter* dengan *material model Mohr-Coloumb*.

Define Materia	als								>
aterials									
Name		~			(Color	^	<u>A</u> dd	
Undisturbed Zone -	Lempung Sa	ngat Lunak							
Undisturbed Zone -	Lempung Me	edium						Delete	9
Undisturbed Zone -	Lempung Lu	nak							
Timbunan									
Sub base									
Smeared Zone - Le	mpung Sang	at Lunak						Accience	4
Smeared Zone - Le	mpung Lunal	(~	Assigned	J
ame:					Color:				
Jndisturbed Zone -	Lempung Sa	ngat Lunak				<u>S</u> et			
Slope Stability									
Material Medale	Maha Ci	u da mala							
Material Model:	Monr-Co	Duiomb		~					
Basic Suction	R Envelope	Liquefaction	Advanced						
Unit Weight:		Cohesion':							
16.67 kN/m ³		52 kPa							
Phi:									
0 •									

Gambar 3. 35 Material Properties Lempung (Sangat Lunak) SLOPE/W

d. Lempung (Lunak)

Material lempung dengan konsistensi lunak menggunakan *Total Stress Parameter* dengan *material model Mohr-Coloumb*.

Oefine Materials				\times
Materials				
Name	Color	^	<u>A</u> dd	-
Undisturbed Zone - Lempung Sangat Lunak		ľ ľ		
Undisturbed Zone - Lempung Medium			Delete	a
Undisturbed Zone - Lempung Lunak				
Timbunan				
Sub base				
Smeared Zone - Lempung Sangat Lunak		l l	Accience	4
Smeared Zone - Lempung Lunak		~	Assigned	J
Name: Color:				
Undisturbed Zone - Lempung Lunak	<u>S</u> et			
Slope Stability				
Material Model: Mohr-Coulomb				
Basic Suction R Envelope Liquefaction Advanced				
Unit Weight: Cohesion':				
16.67 kN/m ³ 54 kPa				
U				

Gambar 3. 36 Material Properties Lempung (Sangat Lunak) SLOPE/W

e. Lempung (Medium/Teguh)

Material lempung dengan konsistensi teguh/medium menggunakan *Total Stress Parameter* dengan *material model Mohr-Coloumb*.

Oefine Materials		
Materials		
Name	Color ^	Add 💌
Undisturbed Zone - Lempung Sangat Lunak		
Undisturbed Zone - Lempung Medium		Delete
Undisturbed Zone - Lempung Lunak		
Timbunan		
Sub base		
Smeared Zone - Lempung Sangat Lunak		Assigned
Smeared Zone - Lempung Lunak	~	Assigned
Name: Color	:	-
Undisturbed Zone - Lempung Medium	<u>S</u> et	
Slope Stability		
Material Model: Mohr-Coulomb		
Moleria Model.		
Basic Suction R Envelope Liquefaction Advanced		
Unit Weight: Cohesion':		
18 kN/m ³ 102 kPa		
Phi:		
0 °		

Gambar 3. 37 Material Properties Lempung (Medium) SLOPE/W

f. Sub Base

Sub base merupakan lapisan perkerasan jalan yang terlatak di atas tanah dasar, material ini menggunakan *Total Stress Parameter* dengan *material model Mohr-Coloumb*.

Oefine Materials		
Materials		
Name	Color ^	<u>A</u> dd 👻
Undisturbed Zone - Lempung Sangat Lunak		
Undisturbed Zone - Lempung Medium		Delete
Undisturbed Zone - Lempung Lunak		
Timbunan		1
Sub base		
Smeared Zone - Lempung Sangat Lunak		Accianad
Smeared Zone - Lempung Lunak	×	Assigned
Name: Color:		_
Sub base	<u>S</u> et	
Slope Stability		
Material Model: Mohr-Coulomb ~		
Basic Suction R Envelope Liquefaction Advanced		
Unit Weight: Cohesion':		
25 kN/m ³ 50 kPa		
Phi		

Gambar 3. 38 Material Properties Sub Base SLOPE/W

g. Rigid Pavement

Rigid Pavement merupakan konstruksi perkerasan kaku pada jalan yang menggunakan bahan beton, material ini menggunakan *Total Stress Parameter* dengan *material model Mohr-Coloumb*.

Define Materials				×
Materials				
Name	Color	^	<u>A</u> dd	-
Sub base				
Smeared Zone - Lempung Sangat Lunak			Delet	е
Smeared Zone - Lempung Lunak				
Platform smear				
Platform				
Pavement		~	Assigne	d
lame:	Color:			
Pavement	<u>S</u> et			
Slope Stability				
Material Model: Mohr-Coulomb ~				
Basic Suction R Envelope Liquefaction Advanced				
Unit Weight: Cohesion':				
23 kN/m ³ 50 kPa				
Bhi				
Fill:				
U -				

Gambar 3. 39 Material Properties Rigid Pavement SLOPE/W

4. Draw Material pada Model

Dari penggambaran geometri dan region sesuai data *cross section*, kemudian pilih *toolbar Draw* lalu klik *materials*. Selanjutnya pilih *material properties* tanah yang telah dibuat sebelumnya, dan inputkan ke area tersebut. SLOPE/W akan memberi warna pada setiap area sesuai dengan warna material tersebut.

Gambar 3. 40 Model setelah diinput material pada SLOPE/W

5. Draw Entry and Exit Location

Selanjutnya adalah penentuan lokasi awal dan akhir longsoran. Klik *toolbar Draw* lalu pilih *slip surface* dan klik *Entry and Exit* kemudian tarik garis untuk *entry* di bagian puncak lereng (crest) dan *exit* di bagian kaki lereng (*toe*).

Gambar 3. 41 Lokasi Entry and Exit SLOPE/W

6. Solve Analysis

Sebelum melakukan analisis pemodelan harus terlebih dahulu disimpan (*save*), lalu klik *start* di sebelah kiri toolbar, setelah itu bisa dilakukan analisis untuk mendapatkan hasil faktor kemanan, kontur, dan pola *slipe surface*.

7. Menampilkan Hasil

Setelah analisis selesai dilakukan, maka hasil dapat dikeluarkan. Untuk memperoleh kontur klik *Draw Contour* lalu pilih kontur apa saja yang diperlukan. Untuk memperoleh hasil berupa grafik maka klik *Graph*.

Gambar 3. 43 Hasil Analisis SLOPE/W untuk Faktor Keamanan

Untuk melihat karakteristik elemen tanah di setiap *slice* (potongan). Klik *View Slice Information*, lalu klik bagian yang akan ditinjau.

Gambar 3. 44 Free body diagram dan Force Polygon potongan yang ditinjau

Untuk melihat keseluruhan *slip surface*, klik *View* lalu *Preference* pilih *View All Slip Surface*.

Gambar 3. 45 Profil Slip Surface