BAB III METODE ALIRAN DAYA SISTEM 500KV MENGGUNAKAN DIgSILENT 14.0.250 POWER FACTORY

3.1 Umum

Program perhitungan DIgSILENT PowerFactory, adalah *software* rekayasa yang berguna untuk analisis industri, utilitas, dan analisis sistem tenaga listrik. Perangkat lunak ini telah dirancang sebagai paket perangkat lunak canggih yang terintegrasi dan interaktif yang didedikasikan untuk sistem tenaga listrik dan analisis kontrol dalam rangka mencapai tujuan utama perencanaan dan optimasi operasi.

DIgSILENT Nama singkatan dari "DIgital SImuLation and Electrical NeTwork calculation program". DIgSILENT Versi 7 adalah perangkat lunak analisis sistem tenaga yang pertama di dunia yang terintegrasi dengan grafis antar muka satu baris, diagram satu baris interaktif, juga termasuk fungsi menggambar, kemampuan mengedit dan semua relevan statis dan dinamis fitur perhitungan.

DIgSILENT PowerFactory dirancang dan dikembangkan oleh para insinyur berkualitas dan programmer dengan pengalaman bertahun-tahun di kedua bidang analisis sistem tenaga listrik dan bidang pemrograman. Akurasi dan validitas dari hasil yang diperoleh dengan perangkat lunak ini telah dikonfirmasi dalam sejumlah besar dan diimplementasi oleh organisasi-organisasi yang terlibat dalam perencanaan dan operasi sistem tenaga.

Dalam rangka memenuhi kebutuhan analisis sistem kekuasaan saat ini, kekuatan sistem paket perhitungan DIgSILENT dirancang sebagai alat rekayasa terpadu yang menyediakan teknik lengkap "*walk-around*" melalui semua fungsi yang tersedia, bukannya sekumpulan modul perangkat lunak yang berbeda. Fitur kunci berikut ini diberikan dalam satu program *executable* tunggal DIgSILENT PowerFactory:

- 1. Fungsi inti PowerFactory: Definisi, modifikasi dan organisasi kasus, rutinitas numerik inti, dan fungsi dokumentasi output.
- 2. Garis grafis dan data penanganan kasus tunggal interaktif terpadu.
- 3. Elemen daya sistem dan database pada studi kasus-kasus dasar.

- 4. Fungsi perhitungan terintegrasi (misalnya garis dan perhitungan parameter mesin berdasarkan informasi geometris atau papan nama/*nameplate*).
- 5. Sistem tenaga konfigurasi jaringan dengan akses interaktif atau terhunung/*online* ke sistem SCADA.
- 6. *Interface* yang generik untuk sistem pemetaan berbasis komputer.

Dengan menggunakan hanya satu database, yang berisi semua data yang dibutuhkan untuk semua peralatan dalam sistem tenaga (misalnya data busbar, Data Generator, data proteksi, harmonic data, data *controller*), PowerFactory dapat dengan mudah mengeksekusi salah satu atau semua fungsi yang tersedia, semua dalam lingkup program yang sama. Beberapa fungsi yang tersedia dalam DIgSILENT PowerFactory adalah analisis aliran beban/*loadflow analysis*, perhitungan arus pendek/*short-circuit calculation*, analisis harmonic/*harmonic analysis*, koordinasi proteksi/*protection coordination*, perhitungan stabilitas/*stability calculation* dan analisis modal/*modal analysis*.

Program DIgSILENT 14.0.250 dapat digunakan untuk studi aliran daya pada sistem yang besar dengan jumlah bus yang *unlimited*. Sistem 500kV PT.PLN (persero) Jawa-Bali merupakan sistem yang cukup besar dan memiliki sekitar 24 bus, oleh karena itu program DIgSILENT 14.0.250 dapat digunakan untuk analisis aliran daya sistem 500kV PT.PLN (persero) Jawa-Bali.

3.2 Metode Aliran Daya Menggunakan DIgSILENT 14.0.250 Power Factory

Metode aliran daya menggunakan DIgSILENT 14.0.250 Power Factory pada sistem 500kV Jawa-Bali dapat dilihat pada gambar 3.1, yang menunjukan *flowchart* metode dan penggunaan DIgSILENT 14.0.250 Power Factory, sehingga dapat menjelaskan metode aliran daya sistem 500kV PT.PLN (persero) Jawa-Bali

Gambar 3.1 Flowchart studi aliran daya menggunakan DIgSILENT 14.0.250

Diagram alir (*flowchart*) studi aliran daya menggunakan DIgSILENT 14.0.250 yang ditunjukan pada gambar 3.1, merupakan proses dimana pertama dimulai hingga keluaran program. Proses metode aliran daya sesuai gambar 3.1 adalah:

- 1. Membuat one-line diagram sistem 500kV Jawa-Bali.
- 2. Data generator, transformator, transmisi, dan bus dapat dimasukan ke dalam program setelah *one-line* diagram dibuat.
- 3. Menentukan sebuah atau beberapa *swing* generator, setelah data generator, transformator, transmisi, dan bus dimasukan.
- 4. Masukan data studi kasus yang ditinjau (Load Flow Analysis).
- 5. *Run* program DIgSILENT 14.0.25 dengan memilih *icon load flow analysis* pada *toolbar*. Program tidak jalan (*error*) apabila terdapat kesalahan, data yang kurang, dan *swing* generator sehingga data dapat dimasukan kembali.
- 6. Keluaran studi aliran daya dapat diketahui setelah program dapat di *run*. Untuk melihat hasil keluaran aliran daya, dapat dilihat pada kotak *result* yang terdapat pada *single line* diagram.

3.3 Prosedur Menggunakan DIgSILENT 14.0.25

Membuat *oneline* diagram sistem pembangkitan seperti langkah-langkah di bawah ini:

1. Jalankan Program DIgSILENT 14.0.25

Program DIgSILENT 14.0.25 dapat digunakan setelah di *install* kedalam komputer, setelah itu program dapat digunakan dengan cara mengklik program DIgSILENT 14.0.25.

Gambar 3.2 icon shortcut program DIgSILENT 14.0.25

Setelah program dijalankan maka akan tampak tampilan seperti gambar 3.3 yang merupakan tampilan pertama program DIgSILENT 14.0.25

Gambar 3.3 Tampilan awal DIgSILENT 14.0.25

Pada tampilan awal DIgSILENT 14.0.25, kita dianjurkan *log on* dengan mengisi *id*/nama/*name* dan juga bisa memproteksi *file* yang dibuat dalam program dengan *password* yang kita inginkan, seperti terlihat pada gambar 3.4.

Log on Licens	se Network Database Advar	nced Appearance
Please enter u Enter new use	ser name and password! r name to create new account!	ES
Name	zenny	-
Password		

Gambar 3.4 Log on DIgSILENT 14.0.25

Selanjutnya masuk ke tampilan untuk memulai membuat *project* dan menggambar *one line diagram*.

Gambar 3.5 Memulai membuat *project* baru atau studi kasus baru Setelah meng-klik "*Project*" maka akan muncul halaman seperti pada gambar 3.6 dimana kita dianjurkan untuk memberi judul studi kasus yang akan dibuat, yang nantinya akan menjadi judul untuk "*grid*" pertama.

Loug	ring Derived Project Storag	ge Description	ОК
Name o	neline diagram 500kv jawa-ba	li	
Start Time	1/1/1970 7:00:00 AM	М	
End Time	2/7/2106 1:28:15 PI	М	Conten
Project Settings	 Project \Settings 	NProject Settings	
Insert			
	New Grid	New Study Case	
Changed Settin	ngs		
Take fro	m existing Project	Set to Default	

Gambar 3.6 Membuat studi kasus baru dengan berupa "grid"

Setelah klik "*OK*" maka akan muncul halaman yang ditunjukan pada gambar 3.7, dimana dianjurkan untuk mengisi "*grid name*" dan juga frekuensi sistem yang akan kita studi kan nantinya. Indonesia sendiri menggunakan frekuensi sistem adalah 50Hz, maka kita isi di bagian kolom "*Nominal Frequncy*" 50Hz.

Grid - Grid.ElmNet		? <mark>x</mark>
ANSI Short-Circuit Harmonics Op	IEC 61363 RMS-Simulation EMT-Simulation otimization State Estimator Reliability Description	ОК
Basic Data Lo	ad Flow VDE/IEC Short-Circuit Complete Short-Circuit	Cancel
Name	500kv jawa-bali	Contents
Diagram		
Nominal Frequency	50. Hz	
Owner		
Owner		

Gambar 3.7 Pengisian *basic data* sistem yang akan dijadikan studi kasus Setelah klik "OK" maka muncul halaman dimana kita bisa memulai menggambar *one line* diagram.

Gambar 3.8 Tampilan utama untuk memulai menggambar *one line* diagram Pada gambar 3.8 terdapat ruang untuk menggambar *one line* diagram dengan menggunakan *template* yang terdapat pada *toolbar* terletak di sebelah kanan. *One line* diagram yang telah dibuat seperti pada gambar 3.9.

One line diagram sistem 500kV PT.PLN (persero) P3B Jawa-Bali yang lengkap dapat dilihat pada lampiran.

Untuk studi kasus pada penyulang Saguling-Bandung Selatan, maka yang ditinjau hanyalah *one line* diagram antara Saguling dan Bandung Selatan saja, seperti yang ditunjukan pada gambar 3.10.

Gambar 3.10 One line diagram penyulang Saguling-Bandung Selatan

3.4 Data Load Flow

Sistem 500kV Jawa-Bali, khususnya penyulang Saguling-Bandung Selatan dapat dilihat pada *one line* diagram PT.PLN (persero) P3B Jawa-Bali. Data dimasukan setelah *one line* diagram sistem 500kV Jawa-Bali direpresentasikan ke dalam program DIgSILENT 14.0.25. Data yang dibutuhkan adalah data pada generator, bus, transmisi, transformator.

3.4.1 Data Pembangkit (Generator)

Data generator yang dibutuhkan untuk analisis rugi-rugi daya hanya lah rating generator pada pembangkit, karena DIgSILENT 14.0.25 dapat dengan otomatis mengkalkulasi data rating tersebut menjadi data-data lain yang diperlukan seperti reaktansi Xd dan Xq, seperti yang ditunjukan pada gambar 3.11.

-	Synchronous Machine Type	e - Library\Ger	16.5kV 206.:	1MVA 0.85	pf (YN).Typ	Sym
	RMS-Simulation EMT-S	imulation Ha	imonics Op	otimization	State Esti	mator ANSI
	Name Gen 16.5kV	206.1MVA 0.8	5pf (YN)	somplete on		71131
	Nominal Apparent Power	206.1	MVA			
	Nominal Voltage	16.5	kV			
	Power Factor	0.85				
	Connection	YN 💌				
l		Para	meter Name:	nslty		
_	Gambar	3.11 Pengis	<mark>ian D</mark> ata G	enerator	NES	

3.4.2 Data Transformator

Data trafo yang dibutuhkan untuk analisis rugi-rugi daya hanya lah rating transformator pada gardu induk atau pun dalam sistem pembangkit, karena DIgSILENT 14.0.25 dapat dengan otomatis mengkalkulasi data rating tersebut menjadi data-data lain yang diperlukan seperti *positif sequence* atau pun *zero sequence* pada trafo, seperti yang ditunjukan pada gambar 3.12.

3-Winding Transf	ormer Type -	Library\MTR 16	5/16.5/500kV 4	12.3MVA.Typ	Tr3		? X
RMS-Simulation Basic Data Lo	EMT-Simulat pad Flow VC	tion Harmonics)E/IEC Short-Circu	3 Optimization uit Complete S	State Estima Short-Circuit	ator Reliability ANSI Short-Circuit	Description	ОК
Name	MTR 16.5/16.8	5/500kV 412.3M\	/A				Cancel
Rated Power			Rated Voltage				
HV-Side	412.3	MVA	HV-Side	500.	kV		
MV-Side	412.3	MVA	MV-Side	16.5	kV		
LV-Side	412.3	MVA	LV-Side	16.5	kV		

Gambar 3.12 pengisian data transformator

Gambar 3.12 merupakan transformator pada gardu induk PLTA Saguling. Transformator saguling menggunakan *3-winding* transformator, kapasitas daya dari transformator ini adalah 412.3 MVA dengan tegangan primer 500 kV dan sekunder/tersier adalah 16.5 kV.

3.4.3 Data Transmisi

Data transimi/line yang dibutuhkan untuk analisis rugi-rugi daya hanya lah rating transmisi dari kawat penghantar yang dipakai untuk menghantarkan daya, karena DIgSILENT 14.0.25 dapat dengan otomatis mengkalkulasi data rating tersebut menjadi data-data lain yang diperlukan seperti *positif sequence* impedansi Z1, *positif sequence* sudut, *positif/zero sequence* resistansi R0/R1, *positif/zero sequence* reaktansi X0/X1, seperti yang ditunjukan pada gambar 3.13 dan gambar 3.14.

RMS-Simulation	EMT-Simulation	Harmonics	Optimization State Estimator Reliability Description OK
Name		CANNET AV202	
Rated Voltage	500.	kV	2.00000 (2400/)
Rated Current	2.4	kA	
Nominal Frequency	50.	Hz	
Cable / OHL	Overhead Line	• •	
System Type	AC	Phases	3 No. of Neutrals
Parameters per L	ength 1,2-Seque	nce	Parameters per Length Zero Sequence
Resistance R'	0.0251	Ohm/km	Resistance R0' 0.1751 Ohm/km
		•	

Gambar 3.13 Pengisisan Data rating transmisi

N 1 7	AT 2USTA	D In MI	
Number of		Resulting Values	
parallel Lines	1	Rated Current	2.4 kA
	,	Pos. Seq. Impedance, Z1	10.99486 Ohm
- Parameters		Pos. Seq. Impedance, Angle	84.89205 deg
		Pos. Seq. Resistance, R1	0.9789 Ohm
Thermal Rating	▼ →	Pos. Seq. Reactance, X1	10.9512 Ohm
Length of Line	39. km	Zero Seq. Resistance, R0	6.8289 Ohm
		Zero Seq. Reactance, X0	32.8536 Ohm
Derating Factor	1.	Earth-Fault Current, Ice	0. A
		Earth Factor, Magnitude	0.6872964
		Earth Factor, Angle	-9.846326 deg

Gambar 3.14 Pengisian data transmisi, jarak suatu penghantar (km) dan kalkulasi otomatis *resulting value*

Gambar 3.13 dan 3.14 merupakan transmisi pada saluran Saguling-Bandung Selatan, dengan panjang penghantar 39km dan rating ACSR-GANNET 4x392.8mm(2400A).

3.4.4 Data Bus

Data trafo yang dibutuhkan untuk analisis rugi-rugi daya adalah:

- 1. ID bus
- 2. Nominal kV (line-line)

Complete Short-Circuit	ANSI Short-Circuit IEC	61363 RMS-Simulation	EMT-Simulation	ОК
Harmonics Opti	mization State Esti	mator Reliability	Description	
Basic Data	Load Flow	VDE/IEC Sh	ort-Circuit	Cancel
Name BUS :	saguling 1			lump to
Type 💌 🕈	[- oump to
Zone 🔷 🗕		(from Su	ubstation)	Cubicles
Area 🔷 🔻 🕈		(from Su	ubstation)	
Substation + re	gion2\2SGLNG			
Out of Service				
System Type	C 💽 Usag	e Busbar	•	
Phase Technology A	BC -			
Nominal Voltage				
Line-Line	16.5 kV			
	526279 LV			
Line-Ground 9	.JZ027JKV			

Gambar 3.15 Pengisian Data Bus

Terlihat pada gambar 3.15 adalah bus pada pembangkit saguling yang mempunyai nominal tegangan sebesar tegangan yang dibangkitkan oleh PLTA Saguling yaitu 16.5kV.