PREDIKSI TINGKAT PEMAHAMAN MATERI PESERTA DIDIK DALAM PEMBELAJARAN ONLINE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM)

    Hendra Fauzi, - (2020) PREDIKSI TINGKAT PEMAHAMAN MATERI PESERTA DIDIK DALAM PEMBELAJARAN ONLINE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM). S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Penelitian ini bertujuan untuk memprediksi tingkat pemahaman materi peserta didik dalam pembelajaran online menggunakan algoritma Support Vector Machine (SVM). Algoritma ini digunakan agar mendapatkan penilaian terhadap pemahaman materi peserta didik yang lebih akurat dan objektif berdasarkan aktivitas peserta didik selama proses pembelajaran online. Penelitian ini menggunakan pendekatan eksperimen untuk mengimplementasikan algoritma Support Vector Machine (SVM), sehingga memiliki kinerja yang optimal dalam melakukan prediksi, menggunakan data dari Kaggle. Tahapan implementasi ini diantaranya data preprocessing yang terdiri dari Encoding Categorical dan normalisasi, kemudian proses pemodelan yaitu proses pelatihan dan pengujian model. Hasil implementasi algoritma Support Vector Machine (SVM) didapatkan akurasi sebesar 88.5% menggunakan parameter C = 24 dan gamma = 0.21, selain itu F1-Score yang didapatkan juga menunjukan hasil yang baik diantaranya kelas Low sebesar 88%, kelas Mid sebesar 87% dan kelas High sebesar 91%. Kemudian, fitur yang memiliki pengaruh sangat besar terhadap hasil prediksi tingkat pemahaman materi pembelajaran dalam pembelajaran online adalah fitur ketidakhadiran. This study aims to predict understanding level of students in online learning using the Support Vector Machine (SVM) algorithm. This algorithm is used in order to get an assessment understanding level of students that is more accurate and objective based on students activities during the online learning process. This study uses an experimental approach to implement the Support Vector Machine (SVM) algorithm, so that it has optimal performance in making predictions, using data from Kaggle. These stages of implementation include preprocessing data which consists of Encoding Categorical and Normalization, then the modeling process is the process of training and testing the model. The results of the implementation of the Support Vector Machine (SVM) algorithm obtained an accuracy of 88.5% using the parameters C = 24 and gamma = 0.21, besides that the F1-Score obtained also showed good results including the Low class 88%, the Mid class 87% and the High class 91%. Then, the feature that has a very big influence on the results of the prediction understanding level of students in online learning is the absence feature.

    [thumbnail of S_PTE_1606292_Title.pdf] Text
    S_PTE_1606292_Title.pdf

    Download (811kB)
    [thumbnail of S_PTE_1606292_Chapter1.pdf] Text
    S_PTE_1606292_Chapter1.pdf

    Download (287kB)
    [thumbnail of S_PTE_1606292_Chapter2.pdf] Text
    S_PTE_1606292_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (639kB)
    [thumbnail of S_PTE_1606292_Chapter3.pdf] Text
    S_PTE_1606292_Chapter3.pdf

    Download (517kB)
    [thumbnail of S_PTE_1606292_Chapter4.pdf] Text
    S_PTE_1606292_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (853kB)
    [thumbnail of S_PTE_1606292_Chapter5.pdf] Text
    S_PTE_1606292_Chapter5.pdf

    Download (277kB)
    [thumbnail of S_PTE_1606292_Appendix.pdf] Text
    S_PTE_1606292_Appendix.pdf
    Restricted to Staf Perpustakaan

    Download (7MB)
    Official URL: http://repository.upi.edu
    Item Type: Thesis (S1)
    Additional Information: No Panggil : S PTE HEN p-2020; NIM : 1606292
    Uncontrolled Keywords: Support Vector Machine (SVM), Prediksi, Tingkat Pemahaman Materi, Pembelajaran Online
    Subjects: L Education > L Education (General)
    T Technology > TK Electrical engineering. Electronics Nuclear engineering
    Divisions: Fakultas Pendidikan Teknik dan Industri > Jurusan Pendidikan Teknik Elektro > Program Studi Pendidikan Teknik Elektro
    Depositing User: Hendra Fauzi
    Date Deposited: 01 Sep 2020 04:53
    Last Modified: 01 Sep 2020 04:53
    URI: http://repository.upi.edu/id/eprint/51024

    Actions (login required)

    View Item View Item