ANALISIS GANGGUAN PADA JARINGAN DISTRIBUSI BERBASIS FUZZY LOGIC DAN JARINGAN SYARAF TIRUAN

Devi Ivana Athaliana, - (2020) ANALISIS GANGGUAN PADA JARINGAN DISTRIBUSI BERBASIS FUZZY LOGIC DAN JARINGAN SYARAF TIRUAN. S1 thesis, Universitas Pendidikan Indonesia.

[img] Text
S_TE_1607331_Title.pdf

Download (308kB)
[img] Text
S_TE_1607331_Chapter1.pdf

Download (119kB)
[img] Text
S_TE_1607331_Chapter2.pdf
Restricted to Staf Perpustakaan

Download (880kB)
[img] Text
S_TE_1607331_Chapter3.pdf

Download (382kB)
[img] Text
S_TE_1607331_Chapter4.pdf
Restricted to Staf Perpustakaan

Download (533kB)
[img] Text
S_TE_1607331_Chapter5.pdf

Download (81kB)
[img] Text
S_TE_1607331_Appendix.pdf
Restricted to Staf Perpustakaan

Download (178kB)
Official URL: http://repository.upi.edu

Abstract

Jaringan distribusi merupakan jaringan yang paling dekat dengan konsumen dan tercatat memiliki banyak jumlah gangguan. Pendeteksian gangguan dengan akurat dapat menimalisir dampak gangguan untuk penyaluran listrik yang berkelanjutan. Pada penelitian ini pendeteksian jenis gangguan dilakukan menggunakan fuzzy logic dan pendeteksian lokasi gangguan dilakukan menggunakan jaringan syaraf tiruan. Metoda berikut dipilih karena memiliki keunggulan dalam kecepatan dan ketepatan dalam pendeteksian dibandingakan dengan metode konvensional. Berdasarkan hasil penelitian, fuzzy logic dapat mendeteksi jenis gangguan dengan baik dan jaringan syaraf tiruan memiliki akurasi sebesar 88,7% untuk mendeteksi lokasi gangguan. Distribution Network is the network that closest to consumers and has a large number of fault. By detecting faults accurately, can minimalize the impact of continuous electricity distribution. In this research, the type of fault detection perform using fuzzy logic and location detection perform using artificial neural network. The following method is chosen because it can detect both quickly and precisely compared with the conventional method. Based on the result of the research, fuzzy logic can perform well for detecting fault type, besides artificial neural networks have an 88,7% accuracy for detecting fault location.

Item Type: Thesis (S1)
Additional Information: No Panggil : S TE DEV a-2020; NIM : 1607331
Uncontrolled Keywords: Analisis Gangguan, Jaringan Distribusi, Fuzzy Logic, Jaringan Syaraf Tiruan
Subjects: L Education > L Education (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Fakultas Pendidikan Teknologi dan Kejuruan > Jurusan Pendidikan Teknik Elektro > Program Studi Teknik Tenaga Elektrik
Depositing User: Devi Ivana Athaliana
Date Deposited: 03 Aug 2020 05:28
Last Modified: 03 Aug 2020 05:28
URI: http://repository.upi.edu/id/eprint/50021

Actions (login required)

View Item View Item