BAB III METODE PENELITIAN

3.1. Desain Penelitian

Penelitian yang dilakukan ini bertujuan untuk mengetahui pengaruh penggunaan alat peraga praktikum terhadap hasil belajar pada mata pelajaran Sistem refrigerasi di SMK Negeri 1 Cimahi paket keahlian TPTU. Jenis penelitian yang digunakan pada penelitian ini adalah penelitian *Experimental Design* dengan pendekatan kuantitatif. Penelitian kuantitatif dapat digunakan untuk meneliti pada populasi atau sampel tertentu, pengumpulan data menggunakan instrumen penelitian, analisis data bersifat kuantitatif/statistic, dengan tujuan untuk menguji hipotesis yang telah ditetapkan (Sugiyono, 2014, hlm. 13).

Desain penelitian yang digunakan dalam penelitian ini *one-shot case study*. Penelitian ini dilakukan tanpa adanya kelompok pembanding dan tanpa adanya tes awal (*pre test*). Alur dari penelitian ini adalah kelas yang digunakan kelas penelitian (kelas eksperimen) langsung diberikan perlakuan (*treatment*) yaitu penggunaan alat peraga praktikum sistem *mockup kompresor* sebagai media pembelajaran, setelah itu diberikan *post test*.

Secara sederhana desain penelitian ini dapat di gambarkan sebagai berikut :

Tabel 3. 1 Desain penelitian one-grup pretest-posttest design

Kelompok	Treatment	Posttest		
XII TPA	Х	O ₂		

(Sumber : Sugiyono, 2012, hlm. 111)

Dimana :

- X : Perlakuan (*treatment*) kegiatan pembelajaran menggunakan alat peraga sebagai media pembelajaran
- O₂ : Nilai Tes akhir (*post test*) yang dilakukan terhadap kelompok eksperimen setelah menggunakan media pembelajaran alat peraga.

3.2 Populasi Dan Sampel Penelitian

Populasi adalah wilayah generalisasi yang terdiri atas: obyek/subyek yang mempunyai kualitas dan karakterisrtik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya" (Sugiyono, 2014, hlm. 61). Populasi pada penelitian ini dari SMK Negeri Cimahi.

Sampel adalah bagian dari jumlah dan karakteristik yang dimiliki oleh populasi (Sugiyono, 2014, hlm. 61). Penentuan sampel dilakukan dengan teknik *simple random* sampling yang merupakan pengembangan dari *probability sampling*. Data lengkap mengenai populasi dan sampel dapat dilihat pada Tabel 3.2.

3.2. Populasi dan sampel penelitian

Populasi	Jumlah siswa	Sampel	Jumlah siswa	
XII TPA	31	XII TPA	31	
XII TPB	31			

3.3 Instrumen Penelitian

Instrumen penelitian adalah alat yang digunakan oleh peneliti dalam mengumpulkan data agar pekerjaannya lebih mudah dan hasilnya lebih baik, dalam arti lebih cermat, lengkap dan sistematis sehingga mudah diolah (Arikunto, 2006 hlm. 136). Instrumen yang digunakan dalam penelitian ini berupa :

3.3.1 Tes Tulis

Tes tertulis berupa butir soal-soal. Tes dilakukan melalui satu tahap yaitu tes setelah subjek penelitian diberikan *treatment*. Tes ini dimaksudkan untuk mengukur hasil belajar peserta didik setelah mendapatkan *treatment*. Hasil yang didapat setelah dilakukan tes kemudian dijadikan tolak ukur untuk mengetahui seberapa pengaruh postitif penggunaan media alat simulator *mockup kompresor* terhadap peningkatan hasil belajar. Jenis tes tulis yang digunakan berupa pilihan ganda dan esay, sedangkan tes tulis pada penelitian ini digunakan untuk bahan *pre test* dan *post test*.

3.3.1.1 Pilihan ganda

Tes pilihan ganda terdiri 16 soal. Soal dibuat dengan memiliki pilihan empat jawaban setiap soal (A, B, C, dan D). Pada setiap soal jelas hanya memiliki satu jawaban yang benar dan tiga jawaban lainnya salah.

3.3.1.2 Esay

Tes esay terdiri empat soal. Soal dibuat untuk mengukur (tujuan) pencapaian hasil belajar aspek yang kompleks. Jenis soal ini dianjurkan dapat mengukur kemampuan peserta tes dalam bentuk analisis, mengorganisasi dan mengekspresikan ide-ide tentang sesuatu.

3.3.1.3 Post test

Posttest yang digunakan untuk mengukur peningkatan hasil belajar setelah diberikan materi pembelajaran alat simulator *mockup kompresor*.

3.4 Prosedur Penelitian

Prosedur penelitian dalam penelitian yang penulis lakukan secara garis besar adalah sebagai berikut:

- 1. Survey pendahuluan untuk menemukan masalah penelitian.
- 2. Studi literatur yaitu untuk memperdalam dan mencari informasi yang diperlukan guna melihat kesenjangan yang terjadi dilapangan.
- Menyusun rancangan penelitian yaitu dengan merumuskan masalah, menentukan tujuan serta memilih metode penelitian yang akan dilakukan oleh peneliti.
- 4. Menyusun alat ukur atau instument penelitian.
- 5. Pengujian instrumet menggunakan uji validitas dan uji reabilitas.
- Menyusun Rencana Pelaksanaan Pembelajaran (RPP) dengan model pembelajaran menggunakan media pembelajaran yang akan dilaksanakan di kelas eksperimen.
- 7. Melakukan eksperimen dengan melakukan langkah-langkah sebagai berikut:
- a. Menentukan sampel penelitian.

Rusydan Abdul Hadi, 2018

- b. Melakukan *treatment* berupa Kegiatan Belajar Mengajar (KBM) di kelas eksperimen dengan menggunakan media pembelajaran alat simulator *mockup kompresor*. Kegiatan siswa di kelas dilihat melelui lembar observasi.
- c. Melakukan *posttest* untuk mengatahui hasil belajar siswa setelah pembelajaran menggunakan media alat peraga sistem pengapian.
- d. Pembagian angket setelah pembelajaran selesai, untuk mengetahui respon siswa terhadap pembelajaran yang menggunakan media alat peraga.
- 8. Mengolah dan menganalisis data hasil penelitan untuk mengetahui seberapa besar peningkatan hasil belajar siswa setelah menggunakan media alat simulator *mockup kompresor*.
- 9. Menyimpulkan hasil penelitian.

Gambar 3.1. Prosedur penelitian.

Rusydan Abdul Hadi, 2018

IMPLEMENTASI PENGGUNAAN SIMULATOR MOCKUP KOMPRESOR PADA KOMPETENSI SISTEM REFRIGERASI DI SMK

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Berdasarkan grafik *fish bone*, penelitian ini dapat dilihat pada Gambar 3.1.

Gambar 3.2. Grafik fish bone penelitian.

3.5 Metode Analisis Data

3.5.1 Analisis Kuantitatif

3.5.1.1 Tingkat Kesukaran Soal

Menganalisis tingkat kesukaran soal artinya mengkaji soal-soal tes dari segi kesulitannya sehingga dapat diperoleh soal-soal mana yang termasuk mudah, sedang dan sukar, sedangkan menganalisis daya pembeda artinya mengkaji soal-soal tes dari segi kesanggupan tes tersebut dalam kategori lemah atau rendah dan kategori kuat atau tinggi prestasinya (Wayan Nurkancana, 1983, hlm. 134).

Untuk mengetahui tingkat kesukaran pada instrumen menggunakan program SPP seperti berikut:

- 1. Membuka program SPSS.
- 2. Data hasil uji tes instrument dianggap telah dimasukkan pada lembar Variable.
- 3. Menu Analyze→Descriptive Statistics→Frequencies diklik.
- 4. Semua data dipindahkan pada kolom *Variables* dengan mengklik tanda panah sebelah kiri kolom.
- 5. Menu Statistics diklik hingga muncul layar baru.
- 6. Kotak *Mean* diklik hingga muncul tanda (\checkmark).
- 7. Tombol Continue diklik.
- 8. Tombol "OK" diklik.

Menurut Suharsimi Arikunto (2007, hlm. 218), kriteria untuk mengetahui tingkat kesukaran item soal adalah sebagai berikut:

I: 0,00 - 0,30 = Sulit

I: 0,30 - 0,70 = Sedang

Rusydan Abdul Hadi, 2018

IMPLEMENTASI PENGGUNAAN SIMULATOR MOCKUP KOMPRESOR PADA KOMPETENSI SISTEM REFRIGERASI DI SMK

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

I: 0,70 - 1,00 = Mudah

3.5.1.2 Uji Reliabilitas

Reliabilitas menunjuk pada satu pengertian bahwa suatu instrumen cukup dapat dipercaya untuk digunakan sebagai alat pengumpul data karena instrumen tersebut sudah baik. Reliabilitas menunjuk pada tingkat keterandalan sesuatu. Reliabel artinya, dapat dipercaya, jadi dapat diandalkan (Arikunto, 2006, hlm. 178).

Cara melakukan uji reliabilitas menggunakan program SPSS, yaitu :

- 1. Membuka program SPSS.
- 2. Data hasil uji tes instrument dianggap telah dimasukkan pada lembar Variable.
- 3. Menu Analyze \rightarrow Scale \rightarrow Reability Analysis diklik.
- 4. Kotak pada menu *Item* diklik hingga muncul tanda (\checkmark).
- 5. Semua data dipindahkan ke kolom *Model* dengan mengklik tanda panah sebelah kiri kolom.
- 6. Menu Alpha dan List Item Labels diklik.
- 7. Menu Statistics diklik hingga muncul layar baru.
- 8. Kotak menu *Item* diklik hingga muncul tanda (\checkmark).
- 9. Menu Continue diklik.
- 10. Tombol "OK" diklik.

Nilai reabilitas data memiliki kriteria masing-masing. Kriteria reabilitas data dapat dilihat pada tabel 3.3.

No	Nilai Reabilitas	Keterangan
1	0,800-1,000	Sangat tinggi
2	0,600-0,799	Tinggi
3	0,400-0,500	Cukup
4	0,200-0,399	Rendah
5	>0,200	Sangat rendah

Tabel 3.3. Keterangan nilai reabilitas

(Sumber: Arikunto, 2006)

3.5.1.3 Uji Validitas

Validitas adalah suatu ukuran yang menunjukan tingkat-tingkat kevalidan atau kesahihan suatu instrumen. Suatu instrumen yang valid atau sahih mempunyai

Rusydan Abdul Hadi, 2018

IMPLEMENTASI PENGGUNAAN SIMULATOR MOCKUP KOMPRESOR PADA KOMPETENSI SISTEM REFRIGERASI DI SMK

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

validitas tinggi. Sebaliknya, instrument yang kurang valid berarti memiliki validitas rendah (Arikunto, 2006, hlm. 168).

Cara melakukan uji validitas menggunakan SPSS, yaitu :

- 1. Membuka program SPSS.
- 2. Menekan menu File, New Data.
- 3. Memasukkan data hasil uji tes instrumen pada bagian data View.
- 4. Pada *Variable View*, nama variable diganti pada bagian *name* sesuai keinginan penulis.
- 5. Klik menu Analyze \rightarrow Correlate \rightarrow Bivariate
- 6. Semua variabel dimasukkan ke dalam kolom Variables.
- Kotak Pearson, Two tailed, dan Test of Significance diklik hingga muncul tanda ceklis (✓).
- 8. Tombol "OK" diklik.

Setiap soal dinyatakan valid ketika r perhitungan r tabel. Cara mendapatkan r tabel dapat dilihat pada tabel 3.4. Taraf signifikansi dapat menggunakan 5% atau 1% saja. Simbol n menandakan seberapa banyak partisipan dalam menjawab setiap soal tes instrumen.

n	Taraf Signifikan			Taraf Signifikan			Taraf Signifikan	
	5%	196	n	596	1%	n	5%	1%
3	0,997	0,999	27	0,381	0,487	55	0,266	0,345
4	0,950	0,990	28	0,374	0,478	60	0,254	0,330
5	0,878	0,959	29	0,367	0,470	65	0,244	0,317
6	0,811	0,917	30	0,361	0,463	70	0,235	0,306
7	0,754	0,874	31	0,355	0,456	75	0,227	0,296
8	0,707	0,834	32	0,349	0,449	80	0,220	0,286
9	0,666	0,798	33	0,3,44	0,442	85	0,213	0,278
10	0,632	0,765	34	0,339	0,436	90	0,207	0,270
11	0,602	0,735	35	0,334	0,430	95	0,202	0,263
12	0,576	0,708	36	0,329	0,424	10	0,195	0,256
13	0,553	0,684	37	0,325	0,418	12	0,176	0,230
14	0,532	0,661	38	0,320	0,413	15	0,159	0,210
15	0,514	0,641	39	0,316	0,408	17	0,148	0,194
16	0,497	0,623	40	0,312	0,403	20	0,138	0,181
17	0,482	0,606	41	0,308	0,398	30	0,113	0,148
18	0,468	0,590	42	0,304	0,393	40	0,098	0,128
19	0,456	0,575	43	0,301	0,389	50	0,088	0,115
20	0,444	0,561	44	0,297	0,384	60	0,080	0,105
21	0,433	0,549	45	0,294	0,380	700	0,074	0,097
22	0,423	0,537	46	0,291	0,376	800	0,070	0,091
23	0,413	0,526	47	0,288	0,372	900	0,065	0,086
24	0,404	0,515	48	0,284	0,368	000	0,062	0,081
25	0,396	0,505	49	0,281	0,364			
26	0,388	0,496	50	0,279	0,361			

Tabel 3.4 r-Tabel Product Moment

3.5.1.4 Uji Daya Beda Soal

Daya beda soal adalah kemampuan suatu soal untuk membedakan antara siswa yang pandai (berkemampuan tinggi) dengan siswa yang bodoh (berkemampuan rendah). (Daryanto, 2001 : 183).

$$D = \frac{B_A}{J_A} - \frac{B_B}{J_B}$$

Keterangan:

D = Daya beda butir soal

 J_A = Banyaknya peserta kelompok atas

J_B = Banyaknya peserta kelompok bawah

B_A =Banyaknya peserta dari kelompok atas yang menjawab soal dengan benar

 B_B =Banyaknya peserta dari kelompok bawah yang menjawab soal dengan benar Kriteria untuk mengetahui daya beda butir soal adalah:

- Jika D = 0,00 0,20 adalah item yang jelek
- Jika D = 0,20 0,40 adalah item yang cukup
- Jika D = 0,40 0,70 adalah item yang baik
- Jika D = 0.70 1.00 adalah item yang baik sekali

Soal yang baik memiliki daya beda 0,4 - 0,70 (Arikunto, 2005:213).

3.5.1.5 Uji Indeks Pengecoh

Instrumen tes tertulis berupa pilihan ganda harus mempunyai pengecoh. Pengecoh adalah opsi-opsi yang bukan merupakan kunci jawaban (jawaban benar).

Butir soal yang baik pengecohnya akan dipilih secara merata oleh siswa yang menjawab salah. Sebaliknya, butir soal yang kurang baik, pengecohnya akan dipilih secara tidak merata. Pengecoh dianggap baik bila jumlah siswa yang memilih pengecoh itu sama atau mendekati jumlah ideal. Menurut (Arifin, 2013:280) indeks pengecoh dihitung dengan rumus:

$IP = \underline{P \quad x \quad 100\%}$

Rusydan Abdul Hadi, 2018

(N - B) (n - 1)

Keterangan:

IP = indeks pengecoh

 \mathbf{P} = jumlah peserta didik yang memilih pengecoh

N = jumlah peserta didik yang ikut tes

- \mathbf{B} = jumlah peserta didik yang menjawab benar pada setiap soal
- \mathbf{n} = jumlah alternatif jawaban

1= bilangan teta

3.5.2 Analisis Data

3.5.2.1 Syarat Pengujian Hipotesis

Teknik analisi data merupakan bagian yang sangat penting dalam metode ilmiah, karena hasil data yang telah dianalisis dan diolah tersebut dapat memberi arti yang berguna bagi pemecahan masalah penelitian. Sugiyono (2013, hlm.199) mengemukakan bahwa dalam penelitian kuantitatif, analisis data merupakan kegiatan setelah data dari seluruh responden atau sumber data lain terkumpul.

3.5.2.1.1 Uji Normalitas Data

Uji normalitas digunakan untuk mengatahui apakah kondisi data berdistribusi normal atau tidak. Kondisi data berdistribusi normal menjadi syarat untuk menguji hipotesis menggunakan ststistik parametrik. Uji normalitas dengan menggunakan program SPSS 22 dapat dilakukan dengan uji Shapiro-Wilk. Dasar pengambilan keputusan dalam uji normalitas Shapiro-Wilk yaitu jika nilai Sig. > 0,05, maka data berdistribusi normal, kemudian jika nilai Sig. < 0,05 maka data tidak berdistribusi normal.

Cara melakukan uji normalitas Shapiro-Wilk dengan SPSS versi 22 yaitu sebagai berikut:

a. Buka lembar kerja SPSS, lalu klik Variable View, pada bagian Name pertama tuliskan Nilai. Kemudian pada bagian Name kedua tuliskan Test, setelah itu pada bagian Decimal yang kedua ganti dengan 0. Selanjutnya, klik pada bagian pada bagian value yang kedua hingga muncul kotak dialog Value Label, pada kotak Value isikan 1 dan pada

Rusydan Abdul Hadi, 2018

kotak *Label* isikan Pretest, lalu klik *Add*. Kemudian, isikan kembali pada kotak *Value* dengan isian 2 dan pada kotak *Label* isikan Posttest, lalu klik *Add* dan klik *Ok*.

- b. Klik Data View, selanjutnya untuk variabel Nilai isikan dengan nilai hasil pretest dan posttest, dan untuk variable Test isikan dengan 1 untuk nilai Pretest dan 2 untuk Posttest.
- c. Selanjutnya, dari menu SPSS, klik Analyze Descriptive Statistiks Explore...
- d. Masukan variabel Nilai ke kotak *Dependen List*, lalu masukan *variabel Test* ke kotak *Factor List*, pada bagian *Display* pilih *Both*.
- e. Setelah itu, klik *Plots...*, maka akan muncul kotak dialog *Expore: Plots*, dari serangkaian pilihan yang ada, berikan tanda centang pada pilihan *Normality plots wuth tests*, lalu klik *Continue*.
- f. Langkah terakhir klik *Ok*, dan akan muncul *Output* SPSS (Perhatikan pada *Output Test of Normality*).

3.5.2.1.2 Uji Homogenitas

Tes statistik untuk menguji homogenitas adalah uji F, yaitu dengan membandingkan varian terbesar dengan varian terkecil. Uji homogenitas dimaksudkan untuk mengetahui apakah sampel yang diambil dari populasi memiliki varian yang sama dan tidak menimbulakan perbedaan signifikan satu sama lain. Rumusnya adalah sebagai berikut:

$$F = \frac{varians\ terbesar}{varian\ terkecil}$$

(Sugiyono, 2007, hlm. 190)

Hasil perhitungan dibandingkan dengan tabel F dan jika dari ringkasan tabel didapatkan $F_{hitung} < F_{tabel}$ dan P signifikan > 0,05, maka data nilai tersebut mempunyai variansi yang homogen.

3.5.2.2 Uji Hipotesis Penelitian

3.5.2.2.1 Uji One Sample T-Test

Rusydan Abdul Hadi, 2018

Uji hipotesis digunakan untuk menjawab rumusan penelitian. Uji hipotesis penelitian menggunakan uji t untuk menguji signifikansi sampel. Penelitian mengambil satu sampel, sehingga uji t yang digunakan adalah uji *one sample t-test*. Berikut langkah-langkah melakukan *paired sample t-test* dengan menggunakan program SPSS versi 22 yaitu:

- a. Buka lembar kerja baru pada pogram SPSS.
- b. Klik Variable View pada SPSS Data Editor
- c. Pada kolom Name, beri nama pada kedua baris.
- d. Pada kolom Decimals, ketik 0.
- e. Abaikan kolom yang lainnya.
- f. Klik Data View pada SPSS Data Editor.
- g. Masuk ke tahap pengisian data, yakni dengan cara memasukan data hasil belajar siswa yang sudah terkumpul ke kolom *Pretest* dan *Posttest*.
- h. Klik menu Analyze Compare Means, kemudaian pilih One Sample T Test.
- i. Kolom variabel dimasukkan ke dalam kotak Test Variable (s).
- j. Kotak Test Value diiisi angka sesuai jumlah sampel.
- k. Menu Option diklik, lalu menentukan tingkat kepercayaan persentase (%).
- Langkah terakhir klik Ok, maka akan muncul output SPSS (hasil uji one sample t test).

Pengambilan keputusan dalam uji *One Sample T-Test* berdasarkan nilai probabilitas atau signifikansi (Sig.). Jika nilai probabilitas atau Sig. > 5%, maka Ho diterima, jika probabilitas < 5%, maka Ho ditolak.