BAB III METODE PENELITIAN

3.1 Lokasi Penelitian

Penelitian ini dilakukan di Jalan Lodaya, Kecamatan Lengkong, Kota Bandung. Saluran drainase yang diteliti adalah saluran drainase yang berada di di Jalan Lodaya, Kecamatan Lengkong, Kota Bandung.

Gambar. 3.1. Lokasi Penelitian

(Sumber: www.google-earth.com)

3.2 Metode Penelitian.

Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian deskriptif evaluatif yaitu metode penelitian yang mengevaluasi kondisi obyektif atau apa adanya pada suatu keadaan yang sedang menjadi obyek penelitian (Supriharyono dalam Agantrietly, 2013).

Penelitian ini dilakukan dengan melakukan analisis terhadap data-data yang didapat dari identifikasi kondisi langsung di lapangan serta data yang di dapat dari beberapa instansi terkait penelitian ini.

3.3. Alur Penelitian

Alur penelitian yang direncanakan dalam penelitian ini digambarkan dengan bagan sebagai berikut :

Gambar 3.2 Diagram Alur Penelitian

3.4 Studi Pendahuluan

Studi pendahuluan merupakan langkah awal yang dilakukan peneliti dalam pengerjaan penelitian ini. Studi pendahuluan dibagi menjadi dua bagian yaitu survey lapangan dan studi literatur. Survey lapangan dilakukan untuk mengetahui keadaan sebenarnya secara langsung dari lokasi yang akan diteliti. Survey lapangan dilakukan dengan melihat langsung kondisi yang ada dilokasi lalu mengidentifikasinya serta dapat juga dengan melakukan wawancara terhadap orang-orang yang berhubungan dengan lokasi penelitian. Dari survey lapangan, kita dapat mengidentifikasi masalah yang ada di lokasi dan menentukan masalah apa yang menjadi fokus utama dalam penelitian ini.

Studi literatur dilakukan untuk mencari referensi dan teori-teori yang berhubungan dalam penelitian ini. Pada penelitian ini, beberapa referensi yang digunakan berupa buku, skripsi, jurnal dan karya tulis lainnya yang digunakan sebagai referensi dalam analisis sistem drainase ini.

3.5 Metode Pengumpulan Data

Metode pengumpulan data untuk penelitian ini adalah sebagai berikut:

a. Data Primer

Pengumpulan data primer terdiri atas:

- 1. Survey kawasan pada tempat penelitian.
- 2. Identifikasi daerah yang terjadi genangan dan penyebabnya.
- 3. Melakukan wawancara dengan beberapa warga sekitar mengenai titik-titik daerah mana saja yang terjadi genangan.
- 4. Melakukan pengukuran dan identifikasi kondisi saluran drainase eksisting yang ada di daerah tersebut.
- b. Data Sekunder

Pengumpulan data sekunder terdiri atas:

- 1. Data curah hujan.
- 2. Peta topografi/rupa bumi.
- Studi pustaka yang berkaitan dengan analisis sistem saluran drainase. Studi pustaka disini sama halnya dengan studi literatur pada sub-bab studi pendahuluan.

3.6 Analisis Data

Dari data-data yang didapatkan, lalu dilakukan analisis terhadap sistem drainase di Jalan Lodaya Kota Bandung, analisis dilakukan dari segi hidrologi dan hidrolika. Analisis yang digunakan penelitian ini didasarkan pada Permen PU nomor 12 tahun 2014 tentang penyelnggaraan sistem drainase perkotaan.

Dari segi hidrologi, analisis yang dilakukan adalah perhitungan curah hujan maksimum harian, setelah itu dilakukan analisis frekuensi dengan metode distribusi normal, distribusi log normal, distribusi gumbel, distribusi log normal 2 dan distribusi log person type III. Lalu dilakukan uji kecocokan dengan menggunakan uji chi-kuadrat dan uji smirnov-kolmogrov. Hal ini bertujuan untuk mengetahui hasil dari metode apa yang akan digunakan untuk menghitung volume

debit rencana. Untuk mengetahui berapa debit rencana dilakukan dengan metode rasional.

Analisis dari segi hidrolika yaitu menentukan berapa koefisien pengaliran yang sesuai dengan kondisi daerah penelitian. Lalu dilakukan juga pengukuran terhadap dimensi drainase eksisting di lapangan. Kemudian dihitung berapa kapasitas tampungan dari sistem drainase eksisting yang ada dilapangan, selanjutnya dievaluasi apakah sistem drainase eksisting tersebut mampu untuk menampung volume debit rencana dan dilakukan pemodelan menggunakan software SWMM.

Berikut merupakan tahapan penggunaan software EPA SWMM untuk analisis hidrolika :

1. Buka program dengan cara pilih ikon 😥 pada dekstop atau dengan cara memebukanya melalui *start menu* lalu pilih EPA SWMM 5.1, contoh seperti gambar berikut :

Gambar 3.3 Tampilan awal start menu

Maka, akan keluar tampilan awal program SWMM seperti berikut :

File Edit View Project I	Report Tools Window Help				
D 📽 🖬 🚳 👒 🗛 🎁 🤇	9 4 E 🖬 🖌 E 🕅 10	Σ 🔐 🖷 🚺 Þ 🛱	0QQIA		
90000HH0	0 to				
Project Map					
Title/Notes Options - Climatology - Hydrology - Hydrology - Hydrolics - Quality					
 Curves 					
Time Patterns Map Labels					
+ - \land + + 24					

Gambar 3.4 Tampilan awal program SWMM

- 2. Memulai proyek baru
 - a. Atur parameter standar (*default*) untuk memudahkan dalam pemasukan data untuk setiap objek atau dengan cara pilih menu *Project* pada menubar lalu pilih *defaults*.

ID Labels	Subcatchmen	ts	Nodes/Links	
Object	I) P	refix	
Rain Gage	s Si	Sta.		
Subcatchr	nents S	S		
Junctions	J			
Outfalls	0			
Dividers	D	D		
Storage Ur	nits S	SU		
Conduits	c			
Pumps	P			
Regulators	s R	į.		
ID Increme	ent 1			
Save as o	defaults for all r	nev	/ projects	

Gambar 3.5 Layer Project Defaults

- b. Pilih *View* lalu pilih *Backdrop* setelah itu pilih *Load* untuk membuka gambar yang akan ditampilkan pada projek.
- 3. Menggambar alur drainase dan daerah tampungan
 - a. Perhatikan icon-icon seperti yang ditunjukan pada gambar di bawah ini. Untuk menggambar *subcathment* (daerah tangkapan air hujan), *rain gage* (stasiun curah hujan), *junction* (node pertemuan dua saluran atau lebih), *conduit* (saluran), dan *storage* (kolam penampungan air hujan).

Gambar 3.6 Tampilan Awal SWMM Dan Letak Ikon

- 4. Input data
 - a. Input data pada Rain Gage.

				lime	Series Edito	or	
Ra	ain Gage Sta.1	×	Time Series Na	me	_		
Property	Value						
Name	Sta.1	^	Description				
X-Coordinate	-2495.495						A
Y-Coordinate	8504.505		Use external	data file name	d below		
Description							G
Tag			Enter time of	ories data in the	table below		
Rain Format	INTENSITY		Venter time s	eries data in the	table below	cinculat	ion
Time Interval	1:00		Date	Time			View
Snow Catch Fac	tor 1.0		(M/D/Y)	(H:M)	Value		VIEW
Data Source	FILE						
TIME SERIES:						-	
- Series Name	*	-				-	
DATA FILE:						-	
- File Name	*						
- Station ID	*	~					ОК
Name of rainfall edit time series)	time series (double-c	lick to					Cancel
						~	Help

Gambar 3.7 Layer untuk Input Data Rain Gage

b. Subcatchment

Subc	atchment S1	×			
Property	Value				
Name	S1	^			
X-Coordinate	60.060				
Y-Coordinate	6117.117				
Description					
Tag					
Rain Gage	*				
Outlet	*				
Area	5				
Width	500				
% Slope	0.5				
% Imperv	25				
N-Imperv	0.01				
N-Perv	0.1				
Dstore-Imperv	0.05				
Dstore-Perv	0.05				
%Zero-Imperv	25				
Subarea Routing	OUTLET				
Percent Routed	100				
Infiltration	MODIFIED_HORTON				
Groundwater	NO				
Snow Pack					
LID Controls	0				
Land Uses	0				
Initial Buildup	NONE				
Curb Length	0	~			
User-assigned nam	ne of subcatchment				

Gambar 3.8 Layer untuk Input Data Subcatchment

c. Junction

Junction J1 ×		
Property	Value	
Name	J1	
X-Coordinate	2405.405	
Y-Coordinate	7693.694	
Description		
Tag		
Inflows	NO	
Treatment	NO	
Invert El.	0	
Max. Depth	0	
Initial Depth	0	
Surcharge Depth	0	
Ponded Area	0	
User-assigned name of junction		

Gambar 3.9 Layer untuk Input Data Junction

d. Conduit link (saluran dainase)

Property	Value	
Name	C1	^
Inlet Node	J1	
Outlet Node	J2	
Description		
Tag		
Shape	CIRCULAR	
Max. Depth	1	
Length	400	
Roughness	120	
Inlet Offset	0	
Outlet Offset	0	
Initial Flow	0	
Maximum Flow	0	
Entry Loss Coeff.	0	

Gambar 3.10 Layer untuk Input Data Conduit

- e. *Setting running simulation*
 - a) Masuk ke menu project, lalu pilih run simulation
- f. Pengecekan hasil
 - a) Pilih map, lalu pilih *elapsed time*.
 - b) Pilih menu View lalu pilh Query. Lalu pilih yang akan di cek.

	Map Query ×
Find	Subcatchments 🗸
With	Area 🗸
	Below 🗸
	<u>G</u> o

Jika dari hasil evaluasi didapatkan bahwa sistem drainase eksisting tersebut tidak mampu menampung volume debit rencana yang terjadi, maka dilakukan *redesign* saluran drainase agar dapat menampung volume debit rencana yang ada.