BAB III

Metodologi Penelitian

3.1 Lokasi dan waktu Penelitian

3.1.1 Lokasi Penelitian

Penelitian yang dilakukan oleh penulis tentang "Pengaruh Perubahan Penggunaan Lahan Terhadap Tingkat Bahaya Erosi Di Das Cerucuk Provinsi Kepulauan Bangka Belitung" berlokasi di DAS Cerucuk Daerah Provinsi Kepulauan Bangka Belitung.

Letak geografis, Kabupaten Belitung terletak antara 107° 08' BT - 107° 58' BT dan 02° 30' LS sampai 03° 15' LS. Luas wilayah Kabupaten Belitung terdiri dari luas daratan dan luas perairan. Luas permukaan daratan ± 2.293 Km² dan luas perairan laut ± 6.363 Km². Pada peta dunia Pulau Belitung dikenal dengan nama Bilitonit yang bergaris tengah Timur-Barat + 79 Km dan garis tengah Utara-Selatan + 77 Km. Batas wilayah Kabupaten Belitung adalah sebagai berikut.

Sebelah Utara	: Laut Cina Selatan
Sebelah Timur	: Kabupaten Belitung Timur
Sebelah Selatan	: Laut Jawa
Sebelah Barat	: Selat Gaspar

Sedangkan Secara geografis, DAS Cerucuk terletak di Kabupaten Belitung dengan posisi 107.6° - 107.9° BT dan 2.6° - 2.9° LS dengan luas ± 55.177 Ha yang secara administratif, DAS Cerucuk terletak pada enam kecamatan di Pulau Belitung, yakni Kecamatan Tanjung Pandan, Kecamatan Sijuk, Kecamatan Badau, Kecamatan Membalong, Kecamatan Dendang, dan Kecamatan Simpang Renggiang. Pulau Belitung sendiri memiliki dua kabupaten, yakni Kabupaten Belitung dan Kabupaten Belitung Timur, tetapi sebagian besar DAS Cerucuk terletak di Kabupaten Belitung. Topografi DAS Cerucuk terdiri dati dataran landai, dataran bergelombang dan daerah berbukit. Sungai Cerucuk

Muetia Dwi Julianti, 2019

Berhulu di Gunung Tajam pada ketinggian ±500 Mdpl lalu mengalir dari arah timur ke barat sepanjang 17 Km dan bermuara ke Selat Gaspar di dekat Kota Tanjung Pandan. Kota Tanjung Pandan (ketinggian rata-rata ±5 Mdpl), terletak dibagian hilir DAS Cerucuk, di sekitar muara Sungai Cerucuk ke Selat Belitung.

Secara geografis, Pulau Belitung terletak di sebelah timur Pulau Bangka dan Pulau Sumatra yang tidak langsung terbuka terhadap Samudra Hindia dan Samudra Pasifik.

Batas wilayah DAS Cerucuk adalah sebagai berikut.

Sebelah Utara	: DAS Sijuk
Sebelah Timur	: DAS Buding
Sebelah Selatan	: DAS Sapei
Sebelah Barat	: Selat Gaspar

3.1.2 Waktu Penelitian

Penelitian yang dilaksanakan oleh penulis dilaksanakan mulai pada bulan

1 April - 31 Juli 2019

Tabel 3.	1	Waktu	Penelitian

No	Kegiatan		April		Mei			Juni				Juli					
110	ixegiutuii	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Persiapan																
	a. Pengajuan																
	Judul Penelitian																
	b. Pengajual																
	Proposal																
2	Pelaksanaan																
	a. Pengambilan																
	dan																
	Pengumpulan																
	Data																
	b. Pengolahan																
	Data																
3	Penyusunan Laporan																

3.2 Bahan dan Alat

3.2.1 Bahan

Bahan digunakan sebagai komponen utama untuk memproleh hasil, setelah nantinya bahan-bahan yang diperlukan terkumpul dan akhirnya diolah. Bahan-bahan yang diperlukan dalam penelitian yang berjudul "Pengaruh Perubahan Penggunaan Lahan Terhadap Pendangkalan Sungai Di Das Cerucuk Provinsi Kepulauan Bangka Belitung" sebagai berikut :

Tabel 3. 2	Sumber	Data	Penelitian
------------	--------	------	------------

No	Bahan	Jenis Data	Sumber
1	Citra Landsat 5, 7, 8	Data Sekunder	USGS
2	Data Batas Administrasi.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
3	Data Sungai dan Danau.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
4	Data Jaringan Jalan.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
5	Data Jenis Tanah.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
6	Data Curah Hujan.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
7	Data Penggunaan Lahan.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
8	Data Geologi.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
9	Data Kemiringan Lereng.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
10	Data Topografi.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
11	Data Erosi.shp	Data Sekunder	BAPPEDA Kab. Belitung/BIG
12	Data Kepadatan Penduduk	Data Sekunder	BPS Kabupaten Belitung dan
			Kabupaten Belitung Timur
13	Data Jumlah Penduduk Laki-	Data Sekunder	BPS Kabupaten Belitung dan
	Laki dan Perempuan		Kabupaten Belitung Timur
14	Data Persebaran Titik Sampel	Data Primer	Ground-Check

3.2.2 Alat

Alat yang digunakan dalam kegiatan penelitian, sebagai berikut :

Tabel 3. 3 Alat yang Digunakan pada Penelitian

No	Alat	Spesifikasi
1	Laptop	Acer Aspire F 15
2	Handphone	Samsung 9 Plus
3	Aplikasi Navigasi/Gps	Aplikasi Mobile Topographer
4	Gps	Gps Essensial
5	Software GIS	GIS Arcmap 10.3

6	Software Microsoft Word	Microsoft Word 2010
8	Software Pengolahan	Software Idrisi 17.0
9	Software Pengolahan	Envi 4.5
10	Aplikasi Citra	Sas Planet
11	Alat Tulis	
12	Kendaraan Roda Dua	

3.3 Alur Penelitian

Kegiatan penelitian ini dimulai dengan mencari permasalahan yang ingin diangkat oleh peneliti, pengumpulan data sekunder dari instansi terkait. Kemudian dilakukan survei lapangan untuk mendapatkan data primer, yang dimana data primer diproses pada tahap pengolahan data dan hasil akhir evaluasi sebagai bahan analisis. Bagan alur kegiatan penelitian tersebut adalah sebagai berikut :

Gambar 3. 1 Bagan Alur Penelitian

3.4 Objek Penelitian

Objek penelitian dilaksanakan di DAS Cerucuk Provinsi Kepuluan Bangka Belitung. Pada penelitian ini yang menjadi objek penelitian adalah perubahan penggunaan lahan persegmen dimulai dari tahun 2001-2009, 2009-2019, 2001-2019 yang dianalisis bagaimana pengaruh perubahan lahan terhadap pendangkalan Sungai Cerucuk.

3.5 Identifikasi Masalah

Dalam melakukan penelitian, penulis menentukan rumusan masalah yang akan diangkat menjadi pokok permasalahan. Setelah penulis melakukan konsultasi dan diskusi dengan pihak Bappeda Kabupaten Belitung dan dosen pembimbing mengenai permasalahan yang ingin diangkat menjadi tugas akhir, kemudian penulis membaca beberapa literature, didapatlah pokok permasalahan.

Pokok permasalahan yang diteliti adalah permasalahan perubahan penggunaan lahan yang berdampak dengan ekosistem alam lainnya. Dimana perubahan penggunaan lahan apa saja yang telah terjadi dalam kurun waktu 18 tahun dan pengaruh perubahan penggunaan lahan terhadap tingkat bahaya erosi di DAS Cerucuk.

3.6 Tujuan dan Manfaat

Tujuan dari sebuah penelitian adalah untuk mencari solusi atau perbaikan dari masalah yang ada sehingga semua pihak yang terlibat dan ada di Kepuluan Belitung dapat melakukan perbaikan untuk masa yang akan datang. Dari penelitian ini juga diharapkan dapat memberikan manfaat untuk berbagai pihak antara lain bagi masyarakat, pemerintah setempat, bagi universitas, bagi mahasiswa lainnya, maupun bagi penulis sendiri. Seperti untuk memberikan sumbangsih pemikiran untuk menambah literature khususnya pada bidang survey pemetaan dan informasi geografis.

3.7 Metode Pengumpulan Data

Pengumpulan data merupakan proses pengadaan data untuk keperluan penelitian. Pengumpulan data sangat penting dalam metode ilmiah, karena data yang dikumpulkan akan digunakan untuk penelitian tersebut. Data yang dikumpulkan harus cukup akurat untuk digunakan. Pengumpulan data dalam kajian dampak perubahan penggunaan lahan terhadap perubahan penggunaan lahan dilakukan dengan dua cara yaitu :

Teknik pengumpulan data pada penelitian ini menggunakan data skunder dan data peimer. Pada data skunder berupa peta pendukung, data citra, data serta kajian teori oleh instansi pemerintahan terkait, serta hasil dari penelitianpenelitian sebelumnya yang telah dilakukan. Sedangkan pada data primer, penulis survey langsung ke lapangan (*Ground-Check*) untuk mendapatkan data hasil wawancara pada masyarakat sekitar, pemerintah terkait, dan mengambil titik sampel untuk macthingkan data hasil pengolahan data citra dengan data lapangan.

Metode pengumpulan data yang digunakan dalam penelitian tentang "Pengaruh Perubahan Penggunaan Lahan Terhadap Tingkat Bahaya Erosi Di Das Cerucuk Provinsi Kepulauan Bangka Belitung" sebagai berikut :

- Metode yang digunakan dalam penelitian ini adalah metode penelitian kualitatif. Penelitian kualitatif ialah prosedur penelitian yang menghasilkan data deskriptif berupa kata-kata tertulis atau lisan dari orang-orang dan perilaku yang diamati (Bodgan dan Taylor dalam Barowi dan Suwandi, 2009: 21)
- 2. Penulis menggunakan jenis dan sumber data primer maupuan data sekunder. Data primer ialah data yang diperoleh atau dikumpulkan langsung di lapangan oleh orang yang melakukan penelitian atau yang bersangkutan yang memerlukannya. Data primer di dapat dari sumber informan yaitu individu atau perseorangan seperti hasil wawancara yang dilakukan oleh peneliti (Hasan 2002: 82).

Data sekunder adalah data yang diperoleh atau dikumpulkan oleh orang yang melakukan penelitian dari sumber-sumber yang telah ada (Hasan, 2002: 58). Data ini digunakan untuk mendukung informasi primer yang Muetia Dwi Julianti, 2019 telah diperoleh yaitu dari bahan pustaka, literatur, penelitian terdahulu, buku, dan lain sebagainya.

- 3. Data primer penulis dapatkan dengan melakukan kegiatan :
 - a. Observasi/Survei Lapangan

Observasi merupakan pengamatan yang dilakukan oleh peneliti baik secara langsung maupun tidak langsung terhadap objek penelitian. Instrument digunakan dalam kegiatan ini adalah instrument yang memuat deskripsi tempat, koordinat, waktu, kegiatan dan jenis lahan.

Observasi dilakukan di beberapa titik desa, diantaranya Desa Air saga, Desa Tanjung Pendam, Kelurahan Kota, Desa Air Ketekok, Desa Air Rayak, Desa Perawas, Desa Badau, Desa Cerucuk, Desa Dendang, Desa Kacang Butor, Desa Air Seru, dan Desa Air Selumar. Untuk mengamati perubahan penggunaan lahan yang terjadi. Kegiatan ini kemudian dicatat sebagai bahan pendukung dari penelitian yang dilakukan penulis.

b. Wawancara

Wawancara merupakan teknik pengumpulan data dengan cara melakukan komunikasi dengan sumber data. Komunikasi dilakukan dengan dialog atau tanya jawab secara lisan baik langsung maupun tidak langsung.

Dalam penelitian ini wawancara dilakukan sebagai pendukung dari analisis factor perubahan penggunaan lahan yang dilakukan oleh peneliti. Wawancara dilakukan kepada penduduk setempat, dan karyawan Bappeda.

c. Dokumentasi

Dokumentasi merupakan sumber non manusia, sumber ini cukup bermanfaat karena telah tersedia sehingga relatife mudah untuk memperolehnya. Dokumentasi merupakan sumber yang stabil dan akurat dengan kondisi yang sebenarnya serta dapat dianalisis secara berulang-ulang dengan tidak mengalami perubahan. Dokumentasi ini dilakukan untuk mengumpulkan data-data berupa data yang sudah tersedia di instansi pemerintahan, seperti kecamatan, desa, instansi BPEDDA, BLHD, Dinas Kehutanan, dinas PUPR, BPDAS, dan lain sebagainya yang bisa langsung diperoleh. Dokumentasi berupa foto-foto keadaan lokasi penelitian dan kegiatan yang dilakukan untuk mendukung penelitian.

4. Data sekunder penulis dapatkan dengan melakukan permintaan datadata secara langsung ke instansi terkait seperti Bappeda, BLHD, Dinas Kehutanan, dinas PUPR, BPDAS, dan lain sebagainya. Selain itu penulis juga mendapatkan data dengan cara mendownload Citra Dari USGS Exploler, BIG dan mecari literature, penelitian terdahulu, maupun buku-buku.

Gambar 3. 2 Peta Sebaran Titik Sampel DAS Cerucuk Kepuluan Belitung Provinsi Kepuluan Bangka Belitung

Muetia Dwi Julianti, 2019

3.8 Pengolahan Data

Penelitian ini berjudul "Pengaruh Perubahan Penggunaan Lahan Terhadap Tingkat Bahaya Erosi Cerucuk Daerah Kabupaten Belitung Provinsi Kepulauan Bangka Belitung" Dengan melakukan pengolahan data yang sebelumnya sudah didapatkan. Terdapat beberapa tahap proses pengolahan data, yaitu pembuatan peta dasar, pengolahan data citra, antara lain Croping dan Komposit, Koreksi Geometrik dan Radiometrik, Klasifikasi Supervised, dan perbandingan Perubahan Penggunaan Lahan pada tahun 2001-2009, 2009-2019, 2001-2019, melakukan perbandingan data atau analisis terhadap data yang sudah diolah dengan data yang ada dilapangan dan membuat bagan atau grafik presentase perubahan penggunaan lahan dan yang terakhir melakukan analisis pengaruh perubahan penggunaan lahan terhadap tingkat bahaya erosi. Beberapa langkah pengolahan, antara lain :

Pembuatan Peta Pendukung

- 1. Penulis membuat beberapa peta pendukung diantaranya, peta batas administrasi, peta DAS, peta titik *ground check*, peta geologi, peta penggunaan lahan, peta kemiringan lereng, peta tanah, peta topografi dan Peta erosi.
 - *Software* yang digunakan dalam pembuatan peta pendukung, yaitu *software ArcGIS*.

- Tentukan system koordinat pada mapview untuk menyamakan koordinat sesuai dengan koordinat pada peta.
- Pada jendela *Table of Content*, klik kanan *Layer*, lalu klik *properties*.

Gambar 3. 3 Data Frame Properties

Pada jendela Data frame Properties pilih tab coordinat System

Data Frame Prop	erties					×		
Feature Cache Annotation Groups Extent Indicators Frame Size and Posit								
General	Data Frame	Co	ordinate System	Illuminat	ion	Grids		
General Data Frame Coordinate System Internation Gads Type here to search Q Q Q X X Favorites Geographic Coordinate Systems Geographic Coordinate Systems X X Projected Coordinate Systems Y Y Y								
() WGS 1984								
표 🚞 Projected Coordinate Systems								

Gambar 3. 4 Tools Penetuan Coordinate System

- Pilih geographic coordinat system, dropdown pilih world kemudian pilih WGS 1984 > Add data-data peta dasar yang ingin diolah
- Dikarenakan data peta dasar atau peta pendukung yang didapat oleh penulis dari instansi Bappeda sudah lengkap, tahap selanjutnya menampilkan symbology peta.
- Pada jendela *Table of Content*, klik kanan data shp, lalu klik properties

Pilih Symbology > Categories > Unique Values > Pilih Value
 Field yang ingin ditampilkan > Klik Add Values > Sesuaikan
 Color Ramp > Jika semuanya sudah sesuai > Klik OK

ayer Prop	perties									
General	Source	Selection	n Display	Symbology	Fields	Definition Query	Labels	Joins & Relate	s Time	HTML Popup
Show:			-				~			1
Feature	es		Draw cat	egories usin	ig uniqu	ie values of one	tield.		Import	
Catego	ries		Value Field			Color	Ramp —			
<mark>Unic</mark>	que values	many	FORMAS			~			~]
Mate	ch to symb	ols in a 🗆							_	
Quanti	ties		Symbol	Value		Label		Count		
Charts		[<	all other value	es>	<all other="" td="" valu<=""><td>ies></td><td></td><td></td><td></td></all>	ies>			
Multiple	e Attribul	tes		<heading></heading>		FORMASI				
			ļ A	Air		Air		?		
			E	3.Sedimen Bat	u Pasir Fo	orma B.Sedimen Ba	atu Pasir I	Forma ?	1	
			E	3.Sedimen For	masi Kela	apaki B.Sedimen Fo	ormasi Kel	lapaki?		
<		>	E	Batuan Trobos	an Granit	e Batuan Trobo	san Gran	ite ?	↓	
	6	R	E	Endapan Aluvi	al dan Pa	antai Endapan Aluv	vial dan P	'antai ?		
	j Y	Jul	Add All Val	ues Add \	/alues	Remove	Remo	ve All Adv	a <u>n</u> ced •	

Gambar 3. 5 Jendela Tools Symbology

- Tahap terakhir lakukan *Layouting* data.
- 2. Pengolahan Data Citra
 - Pengolahan Data citra dilakukan dengan menggunakan data citra landsat 7 (tahun 2001), landsat 5 (tahun 2009) dan landsat 8 (tahun 2019) menggunakan aplikasi Envi 4.5
 - Croping dan Komposite Citra > Buka Software Envi 4.5

 Panggil data citra Landsat yang akan diolah, klik *File > Open Image File >* Seluruh band citra Landsat.

🍳 Availa	ble Bands List		_		×
File Opti	ons				
LT05_L1TF	_122062_199806	29_2018	0619_0	1_T1_E	87.T 🔺
LT05_L1TF		29_2018	0619_0	1_T1_E	36.T
LT05_L1TF		29_2018	0619_0	1_T1_E	35.T
Map Inf LT05_L1TF Band 1	o _122062_199806	29_2018	0619_0	1_T1_E	84.T
LT05_L1TF	o _122062_199806	29_2018	0619_0	1_T1_E	83.T 🗸
Gray S	cale C RGB Co	olor			
	Select	ed Band			
Band 1:LT	05_L1TP_122062	199806	29_201	80619_	01_T1_
Dims 7771	x 7021 (Byte) [BS	Q]			

Gambar 3. 6 Jendela Avalable Bands List

Pada toolbar utama, klik *Basic Tools > Layer Stacking > Import File >* Pilih seluruh band (band 1 – band 7) Landsat 5, (band 1 – band 8) Landsat 7, (band 1 – band 11) Landat 8

Ayer Stacking Parameters	×
Selected Files for Layer Stacking: LT05_L1TP_122062_19980629_20180619_01_T1 LT05_L1TP_122062_19980629_20180619_01_T1 LT05_L1TP_122062_19980629_20180619_01_T1 LT05_L1TP_122062_19980629_20180619_01_T1 LT05_L1TP_122062_19980629_20180619_01_T1 LT05_L1TP_122062_19980629_20180619_01_T1 LT05_L1TP_122062_19980629_20180619_01_T1 LT05_L1TP_122062_19980629_20180619_01_T1 C	Output Map Projection New Arbitrary Geographic Lat/Lon UTM State Plane (NAD 27) State Plane (NAD 83) Argentina - Zone 1 Argentina - Zone 2 Argentina - Zone 3 Datum WGS-84
Output File Range: • Inclusive: range encompasses all the files • Exclusive: range encompasses file overlap	Units Meters Zone 48
Output Result to 🏾 File C Memory Enter Output Filename Choose	X Pixel Size 30.0000000 Meters Y Pixel Size 30.0000000 Meters
E:\FD_H\CITRA\LT05_L1TP_122062_19980629_ OK Cancel	Resampling Nearest Neighbor

Gambar 3. 7 Jendela Layer Stacking Parameters

- Tampilkan citra dengan *composite* 321 pada citra landsat 5 dan 7, *composite* 432 pada citra landsat 8 untuk menampilkan gambar citra *true color*

Gambar 3. 9 Tampilkan Citra dengan Composite 321

Potong citra dengan menggunakan Basic Tools > Resize Data

(Spatial/Spectral)

🍑 Resize Data Input File	
Select Input File: Stacking_Land7	File Information: File: E:\FD_H\CITRA\LE07_L1TP_122062_200100 Dims: 15662 x 13982 x 9 [B50] Size: [Byte] 1.970,874,756 bytes. File Type : ENVI Standard Sensor Type: Unknown Byte Order : Host (Intel) Projection : UTM, Zone 48 South Pixel : 15 Meters Datum : WGS-84 Wavelength : None Upper Left Comer: 1,1 Description: Create Layer File Result [Tue Jul 09 17:34:33 2019]
Spatial Subset Full Scene	Select By File
OK Cancel Previous Open V	

Gambar 3. 10 Jendela Resize Data

Klik *Spatial Subset* > Tentukan daerah citra yang akan dipotong dengan klik *image* > Sesuaikan samples dan lines, pastikan kotak tercakup pada area citra yang dipilih (kotak merah).

Gambar 3. 11 Subset Data

- Klik OK > OK > OK > Choose > Tentukan lokasi dan Output

Filename > OK

 Dan jika ingin melakukan crop sesuai dengan batas daerah > Tampilkan hasil *resize* citra Komposite 321 > Pilih Overlay > Klik Vectors > pilih data SHP batas admin yang ingin digunakan untuk Subsate data > Pada Vector Parameters > Pilih File > Klik Export active layer to ROIs

Gambar 3. 12 Memanggil Data Shp pada Proses Subset Data

Export EVF Layers to ROI	×	
Select conversion method:		
Convert all records of an EVF layer to one ROI		
C Convert each record of an EVF layer to a new ROI		
OK Cancel		

Gambar 3. 13 Export EVF Layer To ROI

• Pada Basic Tools > Pilih Subset Data via ROIs > OK

- a) Koreksi Geometrik
 - Tampilkan citra yang telah di resize atau subset dengan komposit 543 (Landsat 5, 7), 653 (Landsat 8) untuk menampilkan warna false color.
 - Tampilkan citra sentinel Belitung, pada available bands list.

Gambar 3. 14 Citra Sentinel

- Pada Toolbar utama, klik *Map* > *Registration* > Select GCPs : Image to image
- Pilih Display #2 Citra sentinel sebagai base image (sebagai acuan dalam koreksi geometric), Pilih display #1 Citra Landsat
 8 Sebagai warp image (citra yang akan dikoreksi) > OK
- Tentukan GCP dengan memilih objek yang tidak mudah mengalami perubahan, missal stadion, lapangan, atau persimpangan jalan, pastikan nilai *RMS Error* harus dibawah 0,5, kemudian update agar citra menjadi terkoreksi *geometric*.

Gambar 3. 15 Titik GCP dan Nilai RMS Koreksi Geometrik

- b) Koreksi Radiometrik
 - Tampilkan citra yang telah terkoreksi geometric
 - Adapun persamaan yang digunakan untuk mengubah nilai digital menjadi nilai radian adalah :

 $L_{\lambda} = M_L Q_{cal} + A_L$

Keterangan:

 L_{λ} = nilai radian (Watts/(m² * srad * µm))

 M_L = RADIANCE_MULT_BAND_x, dimana x adalah band yang digunakan

 A_L = RADIANCE_ADD_BAND_x, dimana x adalah band yang digunakan

 $Q_{cal} =$ nilai *digital* (DN)

- Setelah didapatkan nilai radians, selanjutnya dapat dilakukan konversi ke nilai reflektansi. Namun untuk band termal bukan dikonversi ke reflektansi tetapi ke nilai *brightness temperature* dengan menggunakan konstanta termal yang terdapat pada metada, dan melalui rumus:

$$T = \frac{K_2}{ln(\frac{K_1}{L_2} + 1)}$$

Keterangan :

T = At-satellite brightness temperature (K)

 L_{λ} = Nilai Radian (Watts/(m2 * srad * μ m))

- K_1 = Konstanta konversi termal, didapat dari metadata (K1_CONSTANT_BAND_x, dimana x adalah band yang akan digunakan)
- K_2 = Konstanta konversi termal, didapat dari metadata (K2_CONSTANT_BAND_x, dimana x adalah band yang akan digunakan)
- Sedangkan persamaan untuk mengubah nilai digital menjadi nilai reflektan tanpa koreksi sudut matahari adalah

$$\rho\lambda' = M\rho Q cal + A\rho$$

Keterangan:

:

 $\rho\lambda'$ = Nilai reflektan, tanpa koreksi untuk sudut matahari . $M\rho$ = REFLECTANCE_MULT_BAND_x, di mana x adalah band yang digunakan $A\rho$ = REFLECTANCE_ADD_BAND_x, di mana x adalah band yang digunakan Qcal = Nilai *digital* (DN)

 Selanjutnya citra dikoreksi sudut matahari untuk menghilangkan perbedaan nilai digital yang diakibatkan oleh posisi matahari. Posisi matahari terhadap bumi berubah bergantung pada waktu perekaman dan lokasi obyek yang direkam. Persamaan untuk koreksi dengan sudut matahari yaitu:

$$\rho\lambda = \frac{\rho\lambda'}{\cos(\theta_{SZ})} = \frac{\rho\lambda'}{\sin(\theta_{SE})}$$

Keterangan:

 $\rho\lambda$ = Nilai reflektan

 θ_{SE} = Sudut elevasi matahari, terdapat pada metadata pada satuan derajat

 θ_{SZ} = Sudut zenith matahari; θ_{SZ} = 90° - θ_{SE}

- Menyiapkan Data dan Rumus untuk Koreksi Radiometrik
- Buka metadata citra Landsat 5,7 dan 8 (file *_MTL)

Gambar 3. 16 Metadata Citra Landsat 5

Cari nilai RADIANCE_MULT_BAND dan nilai RADIANCE_ADD_BAND untuk band 1 sampai band 7, band 9, band 10, dan band 11 (landsat 8), band 1 band 7 (landsat 5) > band 1 sampai 8 pada citra (landsat 7)

a. nilai RADIANCE_MULT_BAND diketik di kolom Nilai M_L

b. nilai RADIANCE_ADD_BAND diketik di kolom Nilai AL

Cari nilai K1_CONSTANT_BAND_10,
 K1_CONSTANT_BAND_11, K2_CONSTANT_BAND_10,
 dan K2_CONSTANT_BAND_11 (untuk landsat 8) >
 K1_CONSTANT_BAND_6 K2_CONSTANT_BAND_6 (untuk landsat 5 dan 7) >

a. nilai K1_CONSTANT_BAND diketik di kolom Nilai K1b. nilai K2_CONSTANT_BAND diketik di kolom Nilai K2

- Cari nilai REFLECTANCE_MULT_BAND dan REFLECTANCE_ADD_BAND untuk band 1 sampai band 7, dan Band 9 (landsat 8), band 1 smapai 5 dan band 7 (landsat 5)
 > band 1 sampai band 5, dan band 7 pada citra (landsat 7)>
 - a. nilai REFLECTANCE_MULT_BAND diketik di kolom
 Nilai M_p
 - b. nilai RADIANCE_ADD_BAND diketik di kolom Nilai A_L
- Cari nilai Sudut elevasi matahari (*Sun Elevation*) pada metadata
 Catat dan ketik di Tabel 4 > Hitung Sin Sudut Elevasi
 Matahari menggunakan kalkulator >
- Uraikan rumus konversi nilai digital ke nilai radians, *brightness temperature*, dan reflektansi untuk masing-masing band dan masukan ke Tabel 1 (untuk rumus konversi ke nilai radians), Tabel 2 (untuk konversi ke nilai *brightness temperature*), Tabel 3 (untuk rumus konversi ke nilai radians), dan Tabel 4 (untuk perhitungan Sin sudut elevasi matahari). Cara menguraikan rumus akan diajarkan terlebih dahulu.

a. Tabel-tabel perhitungan konversi nilai Digital

Tabel 3. 4 Konversi Nilai Digital ke Radian Citra Landsat 5

Band	Nilai <i>M</i> _L	Nilai A_L	Rumus Konversi ke Nilai Radians
1	7.6583E-01	-2.28583	(7.6583E-01*float(b1)) -2.28583
2	1.4482E+00	-4.28819	(1.4482E+00*float(b2)) -4.28819
3	1.0440E+00	-2.21398	(1.0440E+00*float(b3)) -2.21398
4	8.7602E-01	-2.38602	(8.7602E-01*float(b4)) -2.38602
5	1.2035E-01	-0.49035	(1.2035E-01*float(b5)) -0.49035
6	5.5375E-02	1.18243	(5.5375E-02*float(b6)) -1.18243
7	6.5551E-02	-0.21555	(6.5551E-02*float(b7)) -0.21555

Sumber : Metadata Hasil Perhitungan Citra Landsat 5 tahun 2009

		Variables to Bands Pairings
🎯 Band Math	×	Exp: (6.5551E-02*float(b7)) -0.21555
Previous Band Math Expressions:		R7 - Wam (ROI Mask (Resize (Laver (Band 1:1 T05.
(6.5551E-02'float(b7)) -0.21555 (5.5375E-02'float(b6)) -1.18243 (1.2035E-01'float(b5)) -0.49035 (8.7602E-01'float(b4)) -2.38602 (1.0440E+00'float(b3)) -2.21398 Save Restore Clear Delete Enter an expression:	< >	Available Bands List Warp_GCP Warp (ROI Mask (Resize (Layer (Band 11) Warp (ROI Mask (Resize (Layer (Band 11)) Warp (ROI Mask (Resize (Layer (Band 11))) Warp (ROI Mask (Resize (Layer (Band 11))) Warp (ROI Mask (Resize (Layer (Band 11))) Warp (ROI Mask (Resize (Layer (Band 11)))) Map Vanable to Input File Map Vanable to Input File
Add to List		Spatial Subset Full Scene
OK Cancel Help		Enter Output Filename Choose Compress

Gambar 3. 17 Input Band Nilai ML Nilai AL Rumus Konversi ke Nilai Radians

Tabel 3. 5 Konversi Nilai Digital ke Brightness Temperature Citra

Landsat 5

Band	Nilai K1	Nilai K2	Rumus Brightness Temperature
6	607.76	1260.56	1260.56/(alog((607.76/float(b6)+1)))

Sumber : Metadata Hasil Perhitungan Citra Landsat 5 tahun 2009

Band Math ×
Previous Band Math Expressions:
1260.56/(alog((607.76/float(b6)+1)))
Save Restore Clear Delete
Enter an expression:
1260.56/(alog((607.76/float(b6)+1)))
Add to List
OK Cancel Help

Gambar 3 18 Konversi Nilai Digital ke Reflektansi Citra Landsat 5

Tabel 3. 6 Konversi Nilai Digital ke Reflektansi Citra Landsat 5

Band	Nilai <i>Mp</i>	Nilai Ap	Rumus konversi ke nilai
			reflektansi
1	1.2293E-03	-0.008179	(1.2293E-03*float (b1)) -0.008179
2	2.5690E-03	-0.007300	(2.5690E-03* float (b2)) -0.007300
3	2.1863E-03	-0.007207	(2.1863E-03* float (b3)) -0.007207
4	2.6462E-03	-0.004637	(2.6462E-03* float (b4)) -0.004637
5	1.7918E-03	-0.007607	(1.7918E-03* float (b5)) -0.007607
7	2.4872E-03	-0.003669	(2.4872E-03* float (b7)) -0.003669

Sumber : Metadata Hasil Perhitungan Citra Landsat 5 tahun 2009

🍑 Band Math	\times			
Previous Band Math Expressions:				
(2.4872E-03* float (b7)) -0.003669	~			
(1.7918E-03* float (b5)) -0.007607				
(2.6462E-03" float (b4)) -0.004637				
(2.5690E-03*float (b2)) -0.007207	~			
Save Restore Clear Delete				
Enter an expression:				
(2.4872E-03* float (b7)) -0.003669				
Addas Ita				
Add to List				

Gambar 3 19 Band Math Nilai Digital ke Reflektansi

Muetia Dwi Julianti, 2019 PENGARUH PERUBAHAN PENGGUNAAN LAHAN TERHADAP TINGKAT BAHAYA EROSI PROVINSI KEPULUAN BANGKA BELITUNG

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Nilai θ_{SE}	Nilai Sin $ heta_{SE}$
63.22035827	0.89

Tabel 3. 7 Sudut Elevasi Matahari (θ_SE) Citra Landsat 5

Tabel 3. 8 Konversi Nilai Reflektan ke Nilai Reflektan dengan Koreksi Sudut Matahari Citra Landsat 5

Band	Rumus Konversi
1	float(b1)/ 0.89
2	float(b2)/ 0.89
3	float(b3)/ 0.89
4	float(b4)/ 0.89
5	float(b5)/ 0.89
7	float(b7)/ 0.89

Sumber : Metadata Hasil Perhitungan Citra Landsat 5 tahun 2009

🍑 Band Math	\times
Previous Band Math Expressions:	
float(b7)/ 0.89	^
float(b5)/ 0.89 float(b4)/ 0.89	
float(b3)/ 0.74	
float(b2)/ 0.89	Y
Save Restore Clear Delete	
Enter an expression:	
float(b7)/ 0.89	
Add to List	
J	
OK Cancel Help	

Gambar 3. 20 Band Math Nilai Reflektan ke Nilai Reflektan dengan Koreksi

Sudut Matahari

Sumber : Metadata Hasil Perhitungan Citra Landsat 5 tahun 2009

Statistics Results	: Warp_G	СР			-		×
File Options							
Select Plut - Clear	Plot						
		Min/t	Max/Mean:	:Warp_GCP			
250		_, , , ,	· · · ·		· · ·		
200							
200							
s 150 -							
₹ 100 L							
F							
50 E							
0	_					_	
3.0		3.5	4.0 Band Nun	hber 4	.5		5.0
64-49-4-							_
Filenane: F:N	FD H\C	TTRANTTO	5 T1TP 122	062 2009101	7 2016	1019	0. •
Dims: Full Sc	ene (2	,401,632	points)	.002_2009101	./_2010	1017	. î
Basic Stats Band 3	Min	Max	Mean	Stdev			
Band 4 Band 5	ŏ	189	48.039544	42.787642			
Histogram	יאת	Noto	Total	Percent	Acc. P	-+	
Band 3	0	1021789	1021789	42.5456	42.54	56	
	23	Ő	1021789	0.0000	42.54	56	
<	5	0	1021/07	0.0000	42.04		>

Gambar 3. 21 Tabel Statistik Citra Sebelum koreksi

c) Klasifikasi Supervised

Menetapkan Region of Interest

- Buka Citra Landsat yang telah dicrop
- Dari menu bar utama ENVI, Basic Tools > Region of Interest > ROI Tool

Gambar 3. 23 Tools ROI Berfungsi Untuk Melakukan Digitasi

- Pemilihan ROI sebagai *training area* atau sampel untuk masing-masing penutup lahan sesuai skema Klasifikasi Penutup Lahan (SNI 7645:2010) dilakukan dengan ketentuan sebagai berikut :
- Jumlah lokasi *training area* per obyek = jumlah band yang digunakan +1, atau 8+1 = 9 training area per kelas penutup lahan
- Jumlah piksel minimum yang diambil untuk setiap *training* area = (100*jumlah band)/ (jumlah band + 1), atau
 (100*8)/9 = 88,9 piksel per training area
- Pilih area sampel, misalnya permukiman > Klik Window : Zoom ketika akan menetukan sampel ROI > klik kiri untuk memulai digitasi, dan klik kanan dua kali untuk menutup poligon ROI.

Gambar 3. 24 Contoh Sampel Hasil Digitasi Objek Pemukiman

- Pastikan Jumlah piksel lebih dari 89 buah > Kemudian ganti ROI *Name* menjadi Permukiman #1. Apabila jumlah piksel masih dibawah 89 buah, hapus ROI dan ulangi digitasi.
- ROI dengan klik menu *Tools* pada jendela display > 2D scatter plot > Pilih band 4 (merah) sebagai parameter X, dan band 5 (inframerah) sebagai parameter Y > OK.

Setelah muncul jendela Scatter Plot > File > Import ROIs
 > pilih ROI_Permukiman > OK

- Lihat sampel yang kompak atau menyebar. Apabila sampel menyebar maka silahkan diulangi pengambilan sampelnya.

Gambar 3. 25 Sebaran Sampel Hasil Digitasi

- Apabila sampel sudah kompak (mengumpul) Simpan ROI permukiman yang telah dibuat dengan cara, klik *File* pada *window ROI Tool > Save ROIs >* pilih ROI yang akan disimpan > tentukan lokasi dan nama ROI (ROI_Permukiman) dengan klik *Choose*.
- Setelah itu, gabungkan ROI permukiman #1 sampai permukiman #9 dengan klik *Option* pada jendela ROI *Tool Merge Regions* > pilih permukiman #1 sampai permukiman #9 >OK.
- *File > Save ROIs >* sesuaikan dengan skema Klasifikasi
 Penutup Lahan SNI 7645:2010)
- d) Menghitung Warna Penutup Lahan dan ROI Separability

Nilai ROI Separability mempunyai rentang dari 0 s.d 2 dan mengindikasikan sebaik apa pasangan ROI terpilih terpisahkan secara statistik. Nilai lebih dari 1,9 mengindikasikan bahwa pasangan ROI mempunyai *separability* yang baik.

 Pada jendela *ROI Tools*, tampilkan ROI masing-masing penutup lahan yang sudah di merge > klik kanan kolom *Color* pada baris kelas penutup lahan yang ingin diubah warnanya > kemudian pilih warna yang sesuai (misal : awan – putih, permukiman – magenta, dsb)

 Pada jendela ROI Tools pilih Options > Compute ROI Separability > pilih input file citra > OK > Select All Items
 > OK > Separability. Untuk menyimpan report tersebut pada sebuah file ASCII, pilih File > Save Text to ASCII.

🚱 #1 ROI Tool			-		\times	
File ROLType	Options	Help				DAG
Window: C Imag	Calculate Covariance with Stats					
ROI Name	Mei Rep	epureme ort Area	ort 5			
Hutan #2 Sungai #3 Lahan Kosor	Merge Regions Intersect Regions Reconcile ROIs Reconcile ROIs via Map, Band Threshold to ROL Create Class Image from ROIs Create Buffer Zone from ROIs					
Semak Beluk Pertambanga						
New Region						
	Compute ROI Separability					
	Hide Window					

Gambar 3. 26 Tools Cempute ROI Separability

- 3. Melakukan Proses Klasifikasi Penutup/Penggunaan Lahan
 - Pada *toolbar* utama, pilih > *Classification* > *Supervised* > metode yang diinginkan, missal *Maximum Likelihood* > pilih input file > OK
 - Kemudian akan muncul jendela maximum likelihood, Pada Select Classes from Regions, pilih ROI yang akan digunakan sebagai sampel kelas > tentukan lokasi dan nama file keluaran > OK
 - a. Land Change Modeler
 - Tampilkan Citra yang telah terklasifikasi *unsupervised* pada Software Envi
 - Konversi citra yang telah di *unsupervised* menjadi format *raster to vektor*
 - Selanjutnya masuk ke Software ArcGis 10.3

- Add data citra penggunaan lahan yang telah di konversi, klik kanan pada data shp > lalu klik *properties* > tentukan yang kan ditampilkan *symbologi*.
- Setelah tiga data shp penggunaan lahan terklasifikasi secara benar > overlay data penggunaan lahan persegmen (2001-2009), (2009-2019), (2001-2019). Untuk mengetahui perubahan dan jumlah luasan penggunaan lahan yang terjadi.
- 4. Menentukan Pengaruh Perubahan Penggunaan Lahan Terhadap Tingkat Bahaya Erosi.
 - Dikarenakan data shp tingkat bahaya erosi sudah diperoleh > overlay (union) data penggunaan lahan dan data tingkat bahaya erosi, untuk mengetahui luasan dan perubahan lahan apa saja yang menyebabkan tingkat bahaya erosi menjadi berat dan sangat berat.

3.8 Analisis data

Metode pendekatan studi adalah suatu langkah yang digunakan untuk mencapai tujuan dari suatu penelitian. Pendekatan ini menggunakan pendekatan dari aspek fisik penggunaan lahan untuk mengetahui perubahan penggunaan lahan dimana Data lapangan atau hasil Ground-Check dilakukan proses analisis data atau maching dari data hasil pengolahan menggunakan software dengan data sebenarnya dilapangan dan menganalisis dampak pendangkalan sungai yang terjadi akibat Perubahan Penggunaan lahan.

Data-data hasil penelitian yang didapatkan kemudian akan diperoses dan dianalisa dengan menggunakan data citra landsat 5, 7 dan 8 dan menggunakan aplikasi GIS dan ENVI 4.5. konsep ini nantinya akan menjadi informasi data perubahan lahan yang terjadi Daerah aliran Sungai Das Ceuruk di Kabupaten Belitung, yang lebih lengkap dan terbaharukan.

- a. Untuk mengetahui perubahan penggunaan lahan di Daerah sekitar aliran sungai Cerucuk di Kabupaten Belitung.
- b. Untuk mengetahui dampak perubahan penggunaan lahan terhadap pendangkalan Sungai Cerucuk.

3.9 Penutup

Setelah dilakukan pengolahan data dan analisis terhadap hasil pengolahan data ditarik kesimpulan dari penelitian yang telah dilakukan dan diberikan saran-saran untuk perbaikan dan pengembangan dimasa yang akan datang.