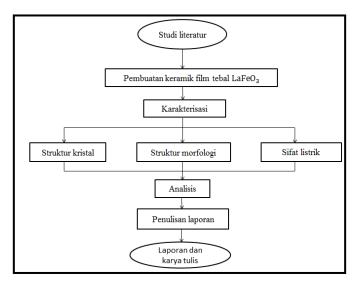
BAB III

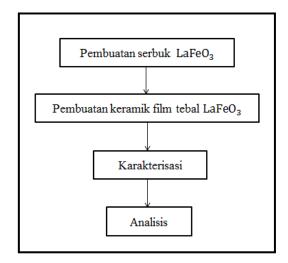

METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada bulan Januari 2019 - Juli 2019 dan bertempat di Pusat Sains dan Teknologi Nuklir Terapan - Badan Tenaga Nuklir Nasional (PSTNT - BATAN) Jl. Tamansari No. 71, Coblong, Bandung, Jawa Barat 40132.

3.2 Desain Penelitian

Tahapan penelitian karakteristik keramik film tebal $LaFeO_3$ ditunjukkan oleh Gambar 3.1

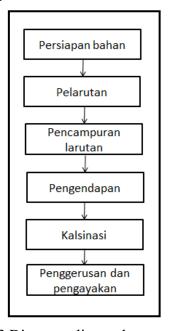


Gambar 3. 1 Diagram alir penelitian

Metode yang digunakan dalam penelitian ini adalah metode berbasis eksperimen. Sampel dibuat dalam bentuk keramik film tebal LaFeO₃ yang ditambahkan couple doping ZnO dan CaO untuk aplikasi sensor gas etanol. Penggunaan couple doping ZnO dan CaO menyebabkan perubahan karakteristik film tebal LaFeO₃ meliputi karakteristik struktur kristal, struktur morfologi, serta karakteristik listrik meliputi sensitivitas, dan temperatur operasi.

3.3 Tahapan Penelitian

Dalam tahapan penelitian ini dilakukan beberapa langkah seperti pembuatan serbuk LaFeO₃, pembuatan keramik film tebal LaFeO₃, karakterisasi, dan analisis seperti yang tertera pada Gambar 3.2



Gambar 3. 2 Diagram alir tahapan penelitian

Adapun penjelasan setiap langkahnya adalah sebagai berikut :

3.3.1 Pembuatan serbuk LaFeO $_3$ tanpa doping dan co-doping ZnO dan CaO

Dalam tahap pembuatan serbuk, terdapat beberapa proses yang harus dilakukan seperti yang tertera pada Gambar 3.3

Gambar 3. 3 Diagram alir pembuatan serbuk

3.3.1.1 Tahap persiapan bahan

Pada tahap ini, bahan-bahan yang diperlukan ditentukan beratnya kemudian ditimbang menggunakan timbangan digital. Bahan-bahan yang diperlukan ditunjukkan oleh Tabel 3.1 dan 3.2

Zeany Luckyta Amanda, 2019

PENGARUH CO-DOPING ZnO DAN CaO TERHADAP KARAKTERISASI KERAMIK FILM TEBAL LaFeO3 UNTUK APLIKASI SENSOR GAS ETANOL

Universitas Pendidikan Indonesia: repository.upi.edu: perpustakaan.upi.edu

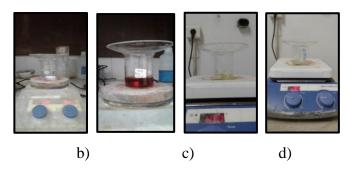
Tabel 3. 1 Komposisi bahan yang digunakan dalam pembuatan serbuk LaFeO₃

Bahan	% mol
LaCl ₃ . 7H ₂ O	50
Fe ₂ O ₃	50

 $\label 3.\ 2$ Komposisi bahan yang digunakan dalam pembuatan serbuk LaFeO3 yang didoping ZnO dan CaO

Bahan	% mol
LaCl ₃ . 7H ₂ O	50
Fe ₂ O ₃	44
CaO	5
ZnO	1

Adapun alat yang digunakan pada tahap persiapan ditunjukkan oleh Tabel 3.3


Tabel 3. 3
Alat yang digunakan pada tahap persiapan bahan

Alat	Fungsi	
Timbangan digital	Menimbang bahan agar sesuai dengan	
	komposisi yang telah ditentukan	
Kertas timbang	Alas untuk menimbang bahan pada	
	timbangan digital	
	Memindahkan bahan dari wadah ke	
Spatula	kertas timbang yang berada di	
	permukaan timbangan	
Beaker glass 100	Wadah untuk menampung bahan	
ml	yang telah ditimbang	

3.3.1.2 Pelarutan

Serbuk LaCl₃. 7H₂O, serbuk Fe₂O₃, serbuk ZnO, dan serbuk CaO yang telah ditimbang, masing-masing dilarutkan menggunakan pelarutnya. Serbuk

 $LaCl_3$. $7H_2O$ dilarutkan dengan menggunakan aquades, serbuk Fe_2O_3 dilarutkan dengan menggunakan HCl 5 M, serbuk ZnO dilarutkan dengan menggunakan HCl 5 M, dan serbuk CaO dilarutkan dengan menggunakan HCl 5 M. Proses pelarutan masing-masing bahan ± 1 -2 jam. Hasil pelarutan bahan dasar ditunjukkan oleh Gambar 3.4

Gambar 3. 4 Proses pelarutan a) LaCl₃.7H₂O b) Fe₂O₃ c) ZnO d)CaO

Reaksi kimia yang terjadi pada proses pelarutan serbuk LaCl₃. 7H₂O, serbuk Fe₂O₃, serbuk ZnO, dan serbuk CaO ditunjukkan oleh Reaksi (3.1), Reaksi (3.2), Reaksi (3.3), dan Reaksi (3.4)

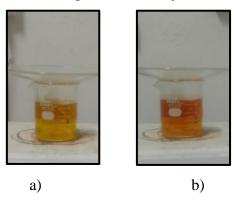
$$LaCl_3.7H_2O + H_2O \rightarrow LaCl_3 + 8H_2O$$
 (3.1)
 $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$ (3.2)
 $ZnO + 2HCl \rightarrow ZnCl_2 + H_2O$ (3.3)
 $CaO + 2HCl \rightarrow CaCl_2 + H_2O$ (3.4)

Bahan dan alat yang digunakan pada proses pelarutan ditunjukkan oleh Tabel 3.4 dan Tabel 3.5

Tabel 3. 4
Bahan yang digunakan pada proses pelarutan.

Bahan	Fungsi
Aquades	Untuk melarutkan LaCl ₃ . 7H ₂ 0
HCl 5 M	Untuk melarutkan Fe ₂ O ₃ , ZnO,
TICI J IVI	dan CaO

Tabel 3. 5
Alat yang digunakan pada proses pelarutan.


Alat	Fungsi

a)

Hot Plate	Alat untuk mengaduk bahan dengan	
	panas dan kecepatan tertentu	
Magnetic stirrer	Sebagai batang pengaduk	
Beaker glass 200 ml	Wadah untuk melarutkan bahan	

3.3.1.3 Pencampuran Larutan

Setelah semua bahan terlarut, tahapan selanjutnya adalah mencampurkan semua larutan. Proses pencampuran ini bertujuan untuk mencampurkan larutan $LaCl_3$. $7H_2O$, Fe_2O_3 , ZnO, dan CaO agar menjadi satu larutan yang homogen diaduk menggunakan magnetic stirrer dan dipanaskan dengan temperatur $80^{\circ}C$. Proses pemanasan bertujuan untuk menjadikan larutan campuran tersebut homogen. Keempat larutan setelah dipanaskan ditunjukkan oleh Gambar 3. 5

Gambar 3. 5 Proses pencampuran larutan a) Sebelum dipanaskan b) Setelah dipanaskan

Reaksi kimia yang terjadi pada saat proses pencampuran larutan ditunjukkan oleh Reaksi (3.5), Reaksi (3.6), Reaksi (3.7), Reaksi (3.8), dan Reaksi (3.9)

$$\begin{aligned} \text{LaCl}_3.7\text{H}_2\text{O} + \text{H}_2\text{O} &\rightarrow \text{LaCl}_3 + 8\text{H}_2\text{O} & (3.5) \\ \text{Fe}_2\text{O}_3 + 6\text{HCl} &\rightarrow 2\text{FeCl}_3 + 3\text{H}_2\text{O} & (3.6) \\ \text{ZnO} + 2\text{HCl} &\rightarrow \text{ZnCl}_2 + \text{H}_2\text{O} & (3.7) \\ \underline{\text{CaO}} + 2\text{HCl} &\rightarrow \text{CaCl}_2 + \text{H}_2\text{O} & + & (3.8) \\ \text{LaCl}_3.7\text{H}_2\text{O} + \text{Fe}_2\text{O}_3 + \text{ZnO} + \text{CaO} + \text{H}_2\text{O} + 10\text{HCl} = \text{LaCl}_3 + 2\text{FeCl}_3 + \\ \text{ZnCl}_2 + \text{CaCl}_2 + 13\text{H}_2\text{O} & (3.9) \end{aligned}$$

3.3.1.4 Pengendapan

Larutan yang telah dicampurkan tersebut ditambahkan NH₄OH (amoniak) sedikit demi sedikit sambil diaduk menggunakan magnetic stirrer hingga pH endapan mencapai ±8. Campuran tersebut kemudian didiamkan sampai endapan dan cairannya terpisah. Proses endapan dapat dilihat pada Gambar 3.6

Gambar 3. 6 Proses pengendapan

Reaksi kimia yang terjadi pada proses pengendapan ditunjukkan oleh Reaksi 3.9 dan 3.10 berikut:

Pengendapan LaFeO₃

$$LaCl_3 + 2FeCl_3 + 11H_2O + 9NH_4OH \rightarrow La(OH)_3 + 2Fe(OH)_3 + 9NH_4Cl + 11H_2O$$
 (3.9)

Pengendapan LaFeO₃ co-doping ZnO dan CaO

$$LaCl_3 + 2FeCl_3 + ZnCl_2 + CaCl_2 + 13H_2O + 13NH_4OH \rightarrow La(OH)_3 + 2Fe(OH)_3 + Zn(OH) + Ca(OH) + 13NH_4Cl + 15H_2O$$
 (3.10)

Alat yang digunakan dalam proses pengendapan ditunjukkan oleh Tabel 3.6

Tabel 3. 6
Alat yang digunakan pada proses pengendapan.

Alat	Fungsi			
Hot Plate	Untuk mencampurkan semua larutan			
Magnetic Stirrer	Sebagai	batang pengad	luk	
Beaker glass 500	Wadah	yang	digunakan	untuk
ml	mencam	purkan larutan		
Pipet tetes	Untuk	menambahkai	n NH ₄ OH	kedalam
1 ipet tetes	endapaı	1		

3.3.1.5 Pengeringan dan Kalsinasi

Setelah larutan campuran yang telah ditambahkan NH₄OH hingga pH ±8 mengendap, endapan harus dipisahkan dari NH₄OH. Kemudian tahap selanjutnya adalah proses pengeringan yang dilakukan untuk mengurangi kadar air yang terkandung dalam endapan. Proses pengeringan ini dilakukan pada tungku dengan temperatur 100°C selama ±8jam sampai hasil endapan tersebut benar-benar kering. Hasil pengeringan tersebut dapat dilihat pada Gambar 3.7

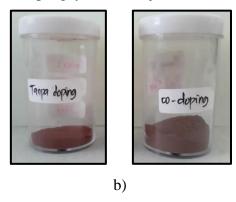
Gambar 3. 7 Hasil pengeringan

Endapan yang telah dikeringkan kemudian dikalsinasi pada tungku dengan temperatur 800°C selama 2 jam. Proses kalsinasi ini bertujuan untuk membentuk senyawa dari unsur-unsur penyusunnya dan membuat struktur kimia yaitu kristalografinya menjadi lebih seragam. Hasil kalsinasi tersebut dapat dilihat pada Gambar 3.8

Gambar 3. 8 Hasil kalsinasi

Alat yang digunakan dalam proses pengeringan dan kalsinasi ditunjukkan oleh Tabel 3.7

Tabel 3. 7
Alat yang digunakan pada proses pengeringan dan kalsinasi.


Alat	Fungsi
------	--------

Covven menselin 25	Wadah	untuk	menyimpa	n hasil
Cawan porselin 25 ml	endapan,	wadah	untuk me	enyimpan
	sampel ya	ang telah	kering	
Furnace	Tungku	untuk m	engeringkar	sampel
	dan melal	kukan pro	ses kalsinas	i
Tang Crunch	Untuk me	engambil	cawan pors	elin pada
	tungku			

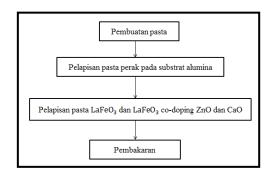
3.3.1.6 Penggerusan dan Pengayakan

a)

Proses penggerusan dilakukan selama ±1 jam sehingga terbentuk serbuk LaFeO₃ yang lebih halus. Setelah serbuk benar-benar halus, tahap selanjutnya adalah proses penyaringan yang dilakukan menggunakan saringan dengan ukuran 100 mesh untuk mendapatkan serbuk yang ukurannya homogen. Kemudian berat serbuk ditimbang menggunakan timbangan digital. Setelah melalui proses penggerusan dan pengayakan, didapatkan serbuk LaFeO₃ sebanyak 1,7566 gram, dan serbuk LaFeO₃ doping ZnO dan CaO (1%mol ZnO) sebanyak 2,8968 gram. Serbuk hasil penggerusan dan pengayakan ditunjukkan oleh Gambar 3.9

Gambar 3. 9 Serbuk LaFeO₃ hasil penggerusan dan pengayakan a) tanpa doping b) co-doping ZnO dan CaO

Alat yang digunakan pada proses penggerusan dan penyaringan ditunjukkan oleh Tabel 3.8


Tabel 3. 8
Alat yang digunakan pada proses penggerusan dan pengayakan

Alat	Funosi
1 1140	i ungsi

Mortar dan alu	Penggerus bahan hasil	
	kalsinasi	
Spatula	Untuk memindahkan serbuk	
	Alat yang digunakan untuk	
Saringan 100	menyaring serbuk agar	
mesh	mendapatkan ukuran serbuk	
	yang homogeny	
	Alat yang digunakan untuk	
Wadah sampel	menyimpan serbuk yang telah	
	disaring	
Timbangan digital	Alat yang digunakan untuk	
	menimbang serbuk yang telah	
	disaring	

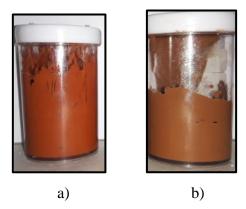
3.3.2 Pembuatan Keramik Film Tebal LaFeO₃

Tahapan pembuatan keramik film tebal ditunjukkan oleh Gambar 3.10

Gambar 3. 10 Diagram alir pembuatan keramik film tebal

3.3.2.1 Pembuatan Pasta

Organic Vehicle (OV) tersusun atas senyawa \propto -terpienol dan ethyl cellulose. Konsentrasi senyawa \propto -terpienol yang terkandung dalam OV adalah 90% dan konsentrasi ethyl cellulose adalah 10%. Maka dari itu, satu gram OV dapat diperoleh dari campuran \propto -terpienol dan ethyl cellulose dengan berat masing-masing 0,9 gram dan 0,1 gram.Untuk membuat pasta, perbandingan presentase konsentrasi antara serbuk LaFeO₃ dan LaFeO₃co-doping ZnO dan CaO dengan Organic Vehicle (OV) adalah 70% dan 30%. Sehingga, untuk membuat 1


gram pasta, maka dibutuhkan 0,7 gram serbuk LaFeO₃ dan LaFeO₃co-doping ZnO dan CaO dicampur dengan 0,3 gram *Organic Vehicle* (OV).

Adapun alat yang digunakan dalam pembuatan pasta ditunjukkan pada Tabel 3.9

 $\label 3. \ 9$ Alat yang digunakan dalam proses pembuatan pasta LaFeO3 dan LaFeO3 doping ZnO dan CaO

Alat	Fungsi
Timbangan	Digunakan untuk menimbang bahan
	yang diperlukan dalam proses
	pembuatan pasta seperti ∝
	-terpienol, ethyl cellulose, serbuk.
	Digunakan untuk memindahkan
Spatula	serbuk dan mengaduk serbuk dengan
	OV saat membuat pasta
Wadah sampel	Wadah untuk menyimpan pasta yang
	telah dibuat

Pasta LaFeO $_3$ dan pasta LaFeO $_3$ doping ZnO dan CaO dapat dilihat dari Gambar 3.11

Gambar 3. 11 (a) Pasta LaFeO₃, (b) Pasta LaFeO₃ co-doping ZnO dan CaO

3.3.2.2 Pelapisan Pasta Perak Pada Substrat Alumina

Substrat alumina dilapisi pasta perak dengan metoda screen printing. Pasta perak yang dilapiskan pada substrat alumina berfungsi sebagai kontak ohmik.

Kontak ohmik tersebut digunakan agar resistansi keramik film tebal dapat terbaca. Langkah-langkah metoda screen printing adalah sebagai berikut:

- 1. Menempelkan substrat alumina menggunakan double tip diatas meja
- 2. Meletakkan screen diatas meja
- 3. Menyesuaikan posisi substrat alumina dan menguncinya dengan holder
- 4. Meletakkan pasta perak diatas screen
- 5. Meratakan pasta perak menggunakan rakel untuk penyapuan pasta perak

Bahan yang digunakan dalam proses pelapisan pasta perak ditunjukkan oleh Tabel 3.10

Tabel 3. 10
Bahan yang digunakan dalam proses pelapisan pasta perak.

Alat	Fungsi			
Substrat alumina	Media untuk melapisi pasta perak			
Pasta perak	Pasta yang berperan sebagai kontak ohmik			
Alhokol	Digunakan untuk membersihkan rakel dan pasta perak yang menempel pada screen			

Adapun alat yang digunakan dalam proses pelapisan pasta perak ditunjukkan oleh Tabel 3.11

Tabel 3. 11
Alat yang digunakan dalam proses pelapisan pasta perak.

Alat	Fungsi		
Screen	Digunakan untuk mencetak pasta perak		
	diatas substrat alumina		
Penjepit Screen	Digunakan untuk menjepit screen agar		
	tidak terjadi pergerakan pada proses		
	penyapuan pasta perak		
Double tipe	Untuk menempelkan substrat alumina		
	agar tidak bergerak ketika dilapisi		
	perak		

Rakel	Digunakan untuk menyapu pasta perak
	pada <i>screen</i>

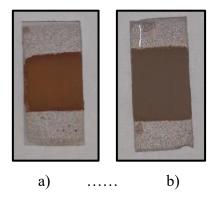
3.3.2.3 Pelapisan Pasta LaFeO₃

Substrat alumina yang telah dilapisi perak kemudian dilapisi pasta LaFeO₃ dan LaFeO₃ co-doping ZnO dan CaO. Pelapisan pasta ini menggunakan metoda yang sama dengan pelapisan perak, yaitu metoda screen printing dengan langkahlangkah sebagai berikut:

- a. Menempelkan substrat alumina yang telah dilapisi pasta perak (dimetalisasi) menggunakan double tip di atas meja
- b. Meletakkan screen di atas mej
- c. Menyesuaikan screen dengan posisi substrat alumina yang telah dimetalisasi dan menguncinya dengan holder
- d. Meletakkan pasta LaFeO₃ co-doping ZnO dan CaO di atas screen
- e. Meratakan pasta perak menggunakan rakel untuk penyapuan pasta perak.

Setelah melakukan tahapan-tahapan tersebut, substrat yang telah dilapisi pasta perak dan pasta LaFeO₃ co-doping ZnO dan CaO didiamkan dulu pada temperatur ruang selama 10 menit.

3.3.2.4 Pembakaran


Proses pembakaran dilakukan sebanyak dua kali. Pertama pada saat substrat telah dilapisi pasta perak, dan kedua setelah substrat dilapisi pasta LaFeO₃. Proses pembakaran pertama yaitu proses pembakaran substrat yang telah dilapisi pasta perak dilakukan pada *furnace* dengan temperatur 600°C selama 10 menit. Kemudian substrat tersebut disimpan dalam temperatur ruangan seperti Gambar 3.12

Gambar 3. 12 Substrat alumina yang dilapisi pasta perak setelah proses pembakaran

Langkah selanjutnya yaitu mengecek nilai resistansi. Substrat yang telah dilapiskan pasta perak sudah bersifat konduktor jika dicek pada saat salah satu ujung substrat dengan menggunakan multimeter hasilnya OL, dan pada kedua ujung substrat hasilnya mendekati nol.

Proses pembakaran kedua adalah proses pembakaran substrat yang telah dilapiskan pasta perak dan dibakar dalam *furnace* selama 10 menit, kemudian dilapiskan dengan pasta LaFeO₃. Substrat tersebut dibakar selama 2 jam dengan temperatur 600°C. Setelah itu, didiamkan kembali pada temperatur ruang selama 10 menit, dan hasilnya seperti Gambar 3.13

Gambar 3. 13 Substrat alumina yang telah dilapisi perak dan pasta LaFeO₃ a) tanpa doping b) co-doping ZnO dan CaO (1%mol ZnO)

Setelah proses pembakaran selesai, maka terbentuklah keramik film tebal LaFeO₃ tanpa dan co-doping ZnO dan CaO. Tahapan selanjutnya adalah proses pengecekan nilai resistansi. Pengecekan nilai resistansi dilakukan menggunakan multimeter.

Adapun alat yang digunakan pada proses pembakaran (*firing*) ditunjukkan pada Tabel 3.12

Tabel 3. 12
Alat yang digunakan pada proses pembakaran (firing).

Alat			Fungsi		
Furnace	Tungku	yang	digunakan	untuk	proses
rurnace	pembakaran				

Bata	Also wately manyiman beautiful film takel	
insulator	Alas untuk menyimpan keramik film tebal	
Tang Cruch	Jepitan untuk mengangkat keramik film tebal	
	dari dalam furnace	

3.3.3 Karakterisasi Keramik Film Tebal

Proses karakterisasi keramik film tebal LaFeO₃ dan LaFeO₃ co-doping ZnO dan CaO bertujuan untuk mengetahui struktur kristal, struktur morfologi, dan sifat listrik seperti senstivitas dan temperatur operasi. Berikut adalah penjelasan mengenai berbagai karakteristisasi keramik film tebal.

3.3.3.1 Karakterisasi Struktur Kristal

Karakterisasi struktur kristal dilakukan untuk mengetahui struktur kristal suatu material. Pada penelitian ini, struktur kristal yang dikarakterisasi adalah struktur kristal suatu material berupa keramik film tebal. Material tersebut yaitu LaFeO₃ tanpa doping dan LaFeO₃ co-doping ZnO dan CaO. Karakterisasi struktur kristal dapat dilakukan menggunakan alat *X-Ray Difraction (XRD)*.

3.3.3.2 Karakterisasi Struktur Morfologi

Karakterisasi struktur morfologi dilakukan untuk mengetahui struktur morfologi suatu material berupa keramik film tebal LaFeO₃ tanpa doping dan LaFeO₃ co-doping ZnO dan CaO. Karakterisasi struktur kristal dapat dilakukan menggunakan alat *Scanning Electron Microscope (SEM)*.

3.3.3.3 Karakterisasi Sifat Listrik

Karakterisasi sifat listrik dilakukan untuk mengetahui sifat listrik dari suatu material berupa keramik film tebal LaFeO₃ tanpa doping dan LaFeO₃co-doping ZnO dan CaO. Karakterisasi listrik dilakukan pada set alat *Chamber gas* dengan cara mengukur resistansi pada temperatur ruang sampai temperatur yang bervariasi dalam keadaan tanpa gas (ambient) dan dalam keadaan terdapat gas etanol 100 ppm, 200 ppm, dan 300 ppm. Keadaan tersebut akan berpengaruh terhadap sensitivitas dan temperatur operasi keramik film tebal. Hasil karakterisasi kelistrikan film tebal ini dapat dijadikan sebagai ukuran kelayakan sensor gas etanol yang dibuat untuk difabrikasi.

3.3.4 Analisis Data

Setelah melakukan karakterisasi sifat keramik film tebal, maka tahap selanjutnya adalah analisis data hasil karakterisasi. Analisis data ini bertujuan untuk mendapatkan kesimpulan sesuai dengan tujuan penelitian.

3.3.4.1 Analisis Pengaruh Co-doping ZnO dan CaO Terhadap Karakteristik Kristal

Untuk mengetahui pengaruh couple doping ZnO dan CaO terhadap keramik film tebal LaFeO₃ maka dibuat dua sampel yaitu keramik film tebal LaFeO₃ dan keramik film tebal LaFeO₃ co-doping ZnO dan CaO. Pengaruh penambahan co-doping ZnO dan CaO pada keramik film tebal LaFeO₃ dapat dilihat dari struktur kristal, parameter kisi (a, b, dan c), dan ukuran kristal (D). Parameter tersebut didapatkan dari hasil karakterisasi struktur kristal menggunakan *X-Ray Difraction* (*XRD*).

Setelah mendapatkan hasil karakterisasi struktur kristal, langkah selanjutnya adalah melakukan pencocokan hasil karakterisasi dengan *JCPDS* (*Joint Committe of Powder Diffraction Standart*) menggunakan *software Macth! 3.* Dari hasil pencocokan tersebut, akan diketahui puncak-puncak hasil difraksi yang digunakan untuk menghitung indeks miller (hkl) dan parameter kisi dari keramik film tebal LaFeO₃ dan keramik film tebal LaFeO₃ co-doping ZnO dan CaO.

3.3.4.2 Analisis Pengaruh co-doping ZnO dan CaO Terhadap Karakteristik Morfologi

Struktur morfologi dari keramik film tebal LaFeO₃ dan keramik film tebal LaFeO₃ co-doping ZnO dan CaO untuk diaplikasikan sebagai sensor gas etanol dapat diketahui setelah melakukan analisis terhadap data hasil uji karakterisasi struktur morfologi menggunakan Scanning Electron Microscope SEM. Analisis struktur morfologi dilakukan dengan cara mengamati citra permukaan film tebal hasil karakterisasi. Berdasarkan citra Scanning Electron Microscope (SEM) maka dapat dilakukan perhitungan ukuran butir rata-rata sesuai dengan Persamaan 3.1

$$\bar{d} = \frac{L(\mu)}{N_{tot}P} \tag{3.1}$$

Dengan \bar{d} adalah ukuran butir rata-rata (μ), L adalah panjang garis (cm), N adalah jumlah total butir yang terdapat dalam garis, dan P adalah perbandingan antara panjang garis acuan dalam cm dan μ m.

Berdasarkan hasil perhitungan rata-rata ukuran butir tersebut, maka dapat ditentukan berpengaruh atau tidaknya penambahan co-doping ZnO dan CaO pada keramik film tebal LaFeO₃. Jika keramik film tebal LaFeO₃ tanpa doping dan keramik film tebal LaFeO₃ co-doping ZnO dan CaO memiliki ukuran butir rata-rata yang berbeda, maka penambahan co-doping ZnO dan CaO berpengaruh terhadap karakteristik struktur morfologi keramik film tebal LaFeO₃.

3.3.4.3 Analisis Pengaruh co-doping ZnO dan CaO Terhadap Karakteristik Listrik.

Sifat listrik keramik film tebal LaFeO₃ dan keramik film tebal LaFeO₃ doping ZnO dan CaO dapat dikarakterisasi dengan menggunakan set alat Chamber Gas yang dipanaskan dari mulai temperatur ruang sampai temperatur 360°C. Pada set alat Chamber Gas tersebut akan muncul nilai resistansi setiap kenaikan temperatur 5°C. Kemudian nilai resitansi dan temperaturnya dicatat sebagai data hasil uji karakterisasi listrik keramik film tebal LaFeO₃ tanpa doping serta keramik film tebal LaFeO₃ doping ZnO dan CaO. Pengujian listrik dilakukan tanpa menggunakan gas etanol (pada keadaan ambient) dan dengan menggunakan gas etanol dengan konsentrasi 100 ppm, 200 ppm, dan 300 ppm. Dari data yang didapatkan dari hasil uji karakteristik listrik menggunakan set alat chamber gas yaitu besarnya nilai resistansi pada temperatur tertentu, maka langkah selanjutnya adalah memplot grafik resistansi terhadap temperatur (R-T). Apabila keramik film tebal tersebut merupakan bahan semikonduktor, maka akan menghasilkan grafik penurunan resistansi secara eksponensial ketika temperatur operasi meningkat. Nilai sensitivitas keramik film tebal dihitung menggunakan Persamaan 3.2 (Thuy, dkk. 2014)

$$S = \frac{(R_g - R_a)}{R_a} \tag{3.2}$$

30

Dimana S adalah sensitivitas sensor, R_g adalah resistansi ketika terdapat gas etanol dinyatakan dalam ohm (M Ω), dan R_a adalah resistansi pada keadaan *ambient* dalam (M Ω).

Setelah mendapatkan nilai sensitivitas, kemudian dibuat grafik sensitivitas terhadap temperatur (S-T). Nilai sensitivitas tertinggi merupakan nilai sensitivitas dari keramik film tebal tersebut. Sedangkan besarnya temperatur pada nilai sensitivitas tertinggi merupakan temperatur operasi keramik film tebal tersebut. Perbedaan nilai sensitivitas dan temperatur operasi pada keramik film tebal LaFeO₃ tanpa doping dan dengan ditambah co-doping ZnO dan CaO menunjukkan adanya pengaruh dari penambahan co-doping tersebut.