BAB III

METODE PENELITIAN

1.1 Metode Penelitian

Untuk menghasilkan penelitian yang akurat perlu ditentukan metode yang akan digunakan selama penelitian. Suharsimi Arikunto (2010, hlm.203) mengemukakan bahwa metode penelitian adalah cara yang digunakan oleh peneliti dalam mengumpulkan data penelitiannya. Metode penelitian yang digunakan dalam penelitian ini adalah metode kuasi eksperimen. Kuasi eksperimen mempunyai persamaan yang besar dengan eksperimen sebenarnya, perbedaannya terletak pada penggunaan subjek. Menurut Ali (1993, hlm. 140) kuasi eksperimen tidak menggunakan sampel random melainkan menggunakan sampel atau kelompok yang sudah ada. McMillan dan Schumacher (2001, hlm. 50) menjelaskan bahwa penelitian eksperimen merupakan "reserach in which independent variable is manipulated to investigate cause and effect relationship between the independent and dependent variable". McMillan dan Schumacher (2001, hlm. 402) kemudian menegaskan bahwa penelitian kuasi eksperimen adalah "A type of experiment which research participants are not randomlu assigned to the experimented and control group". Individu tidak secara acak mempunyai peluang yang sama baik dalam kelompok eksperimen maupun dalam kelompok kontrolnya.

3.2 Objek dan Subjek Penelitian

Dalam penelitian ini yang menjadi objek penelitian adalah kemampuan berpikir kritis siswa. Pun yang menjadi subjek penelitian dalam penelitian ini adalah siswa kelas X IPS di SMA Negeri 10 Kota Tasikmalaya yang terdiri dari empat kelas, terpilih dua kelas yaitu X IPS 3 sebagai kelas eksperimen dan X IPS 4 sebagai kelas kontrol. Kedua kelas tersebut memiliki karakteristik yang sama dilihat dari data pra-penelitian menggunakan soal-soal kemampuan berpikir kritis, yaitu dengan hasil kemampuan berpikir kritis kedua kelas tersebut masih rendah.

3.3 Desain Penelitian

Menurut Sugiyono (2008, hlm. 77) mengatakan bahwa desain penelitian adalah sesuatu yang berkaitan dengan metode dan alasan mengapa metode tersebut digunakan dalam penelitian. Pun desain penelitian yang digunakan dalam penelitian ini adalah desain non-equivalent control group design. Penentuan kelas eksperimen dan kelas kontrol tidak dipilih secara random. Kedua kelas tersebut diberi pretest dan posttest dan hanya kelompok eksperimen yang mendapat perlakuan dari model dan teknik pembelajaran yang digunakan dalam penelitian. Apabila menggunakan tabel maka dapat dilihat sebagai berikut.

Tabel 3.1

Desain Penelitian Non-Equivalent Control Group

Kelas		Penelitian	
Eksperimen	0_1	X	0_2
Kontrol	0_3	-	O_4

Sumber: Sugiyono (2008, hlm. 79)

Dengan keterangan:

0₁ : Tes awal pada kelas eksperimen sebelum diberi perlakuan

0₂ : Tes akhir pada kelas eksperimen setelah diberi perlakuan

0₃ : Tes awal pada kelas kontrol

0₄ : Tes akhir pada kelas kontrol

X : Perlakuan berupa model pembelajaran Cooperative Learning

teknik STAD (Student Team Achievement Division)

3.4 Definisi Operasional Variabel

Definisi operasional ini perlu untuk dicatat dalam penelitian, sebab definisi operasi variabel ini akan mempermudah peneliti untuk menentukan alat pengambil data mana yang cocok. Narbuko dan Achmadi (2009, hlm. 129) mengartikan definisi operasional variabel sebagai definisi yang didasarkan atas sifat-sifat yang dapat didefinisikan dan dapat diamati (diobservasi). Oleh karena itu, Bridgman (dalam Narbuko dan Achmadi, 2009, hlm. 129) menegaskan bahwa setelah variabel-variabel didefinisikan dan diklasifikasikan, maka variabel-

variabel tersebut perlu didefinisikan secara operasional. Di bawah ini merupakan definisi operasional variabel penelitian.

Tabel 3.2
Definisi Operasional Variabel

Definisi Operasional variabei						
Konsep Teoritis	Variabel	Konsep Empiris	Konsep			
			Analisis			
Suatu model	Model	Sintak model Cooperative Ha	sil			
pembelajaran	Cooperative	Learning teknik STAD: per	nerapan			
	Learning	1. Tahap pengajaran mo	odel			
yang	· ·	Guru menyampaikan Co	operative			
menekankan pada	Teknik STAD	• •	arning			
adanya aktivitas	(X)	1	nik STAD			
dan interaksi di		memotivasi siswa dap mengenai materi dar	pat terlihat ri:			
antara siswa		pelajaran yang akan 1. l				
untuk saling			siswa secara			
memotivasi dan		melakukan apersepsi. a	aktif dalam			
		Guru menjelaskan p	proses			
saling membantu		-	pembelaja-			
dalam menguasai		J. 5	ran			
materi pelajaran		akan digunakan dalam 2. l				
guna mencapai		1 3	siswa dalam			
		<u>.</u>	bekerja sama memecahkan			
		8	pertanyaan			
maksimal (Slavin			atau masalah			
dalam Isjoni,		· ·	dalam proses			
2007, hlm. 51)		•	pembelajara			
		0 m 1	n			
		Setiap kelompok 3. I	Mengetes			
		diberikan lembar kerja	sejauh mana			
		yang berisi tugas yang l	kemampuan			
		harus diisi secara s	siswa dalam			
			memahami			
			materi			
		saling membantu 4. I				
		\mathcal{C}	memotivasi			
		1 1	siswa dalam			
		akan membimbing dan	mengumpul-			

bertugas sebagai kan poin motivator yang akan juga diakumulasi fasilitator. 3. Tahap tes individu kan Untuk mengetahui menghasilka keberhasilan belajar n skor telah yang dicapai siswa, guru mengadakan tes yang akan dikerjakan secara individu. 4. Tahap rekognisi Perhitungan skor individu dan perhitungan skor kelompok. Setiap tim menerima penghargaan bergantung pada nilai skor rata-rata tim. (Huda, 2016. hlm. 202)

Berpikir kritis Kemampuan adalah Berpikir Kritis suatu proses intelektual (Y) di tertib yang mana secara aktif dan terampil mengkonsep, menerapkan, menganalisis, mensintesis, dan atau mengevaluasi

kritis siswa diukur dari nilai menggunakan indikator: dan pretest 1. Memberikan posttest penjelasan sederhana. kemampuan 2. Membangun berpikir kritis keterampilan dasar. kelas 3. Menyimpulkan. eksperimen 4. Memberikan dan kelas penjelasan lebih lanjut. kontrol pada 5. Strategi dan taktik mata pelajaran Ekonomi

Skor kemampuan berpikir Data diperoleh

yang

informasi

diperoleh dengan cara observasi, pengalaman, refleksi, menalar, atau mengkomunikasi kan sebagai petunjuk untuk apa-apa yang dipercaya dan apa yang harus dilakukan. (Paul dalam Fitriyah et al.2016. hlm. 581)

3.5 Instrumen Penelitian

Menurut Arikunto (2009, hlm. 25) instrumen penelitian adalah sesuatu yang dapat digunakan untuk mempermudah seseorang melakukan tugas atau mencapai tujuan secara efektif atau efisien. Dalam penelitian ini yang menjadi instrumen penelitian adalah tes yang digunakan pada *pretest* dan *posttest* baik pada kelas eksperimen maupun pada kelas kontrol. Langkah-langkah sistematika penyusunan instrumen penelitian adalah sebagai berikut.

- 1. Mempelajari KI dan KD.
- 2. Menyusun IPK dan tujuan pembelajaran.
- 3. Menyusun kisi-kisis instrumen penelitian.
- 4. Penyusunan tes tertulis.
- 5. Uji coba soal yang digunakan.
- 6. Uji validitas, uji reliabilitas, tingkat kesukaran soal, dan daya pembeda soal.
- 7. Revisi soal yang telah diuji coba.

8. Menggunakan soal untuk mengukur kemampuan berpikir kritis.

3.6 Uji Instrumen Penelitian

3.6.1 Uji Validitas

Menurut Arikunto (2010, hlm. 211) validitas adalah suatu ukuran yang menunjukkan tingkat-tingkat kevalidan atau kesahihan suatu instrumen. Validitas item yang digunakan dalam penelitian ini adalah teknik korelasi point biserial dengan rumus sebagai berikut:

$$r_{pbi} = \frac{M_p - M_t}{S_t} \sqrt{\frac{p}{q}}$$

(Sudijono, 2011, hlm. 185)

Keterangan:

 r_{pbi} = Koefisien korelasi biserial.

 M_p = Skor rata – rata hitung jawaban betul

 $M_t = \text{Skor rata} - \text{rata dari skor total}$

 S_t = Standar deviasi dari skor total

p = Proporsi siswa yang menjawab betul terhadap butir yang diuji

q = Proposi siswa yang menjawab salah terhadap butir yang diuji

Dalam hal ini nilai r_{pbi} diartikan sebagai koefisien korelasi, adapun kriterianya dapat dilihat pada Tabel 3.3 sebagai berikut:

Tabel 3.3
Interpretasi Validitas

Interval	Kriteria
0,90 - 1,00	Sangat tinggi
0,70 - 0,90	Tinggi
0,40-0,70	Sedang
0,20-0,40	Rendah
< 20	Sangat rendah

Sumber: Sudijono, 2009, hlm. 258

Validitas yang diukur dalam penelitian ini merupakan validitas butir soal. Uji validitas soal apabila r_{xy} > r_{tabel} maka soal tersebut valid, di mana r_{tabel} yang digunakan dalam penelitian ini adalah 0,32. Untuk menguji valid

tidaknya soal instrumen dalam penelitian ini menggunakan perangkat lunak yaitu *Anates V4*. Hasil dari pengujian validitas untuk lima butir soal ini dinyatakan valid karena $r_{xy} > r_{tabel}$. Pernyataan tersebut didukung oleh data pada Tabel 3.4 di bawah ini.

Tabel 3.4 Hasil Uji Validitas Instrumen

No. Soal	r _{xy}	r tabel	Kesimpulan
1	0,758	0,32	Valid
2	0,788	0,32	Valid
3	0,626	0,32	Valid
4	0,577	0,32	Valid
5	0,599	0,32	Valid

Sumber: Lampiran 6

3.6.2 Uji Reliabilitas

Menurut Arikunto (2010, hlm. 221) reliabilitas menunjukkan pada pengertian bahwa suatu instrumen cukup dapat dipercaya untuk digunakan sebagai alat pengumpul data karena instrumen tersebut sudah baik. Uji reliabilitas instrumen dalam penelitian ini menggunakan rumus Alpha. Alpha digunakan untuk mengukur tingkat reliabilitas instrumen yang skornya merupakan rentang antara beberapa nilai (misalnya 0-100) atau yang berbentuk skala 1-3, 1-4, 1-5, atau 1-7 dan seterusnya (Arikunto, 2010, hlm. 239). Untuk mencari reliabilitas dari butir soal yang tersedia maka dapat dilakukan dengan menggunakan rumus:

$$r_{11} = \left[\frac{k}{k-1}\right] \left[1 - \frac{\sum \sigma b^2}{\sigma^2 t}\right]$$

Dengan keterangan:

 r_{11} = reliabilitas instrument

k = banyaknya butir pertanyaan atau banyaknya soal

 $\sum \sigma b^2$ = jumlah varians butir

 $\sigma^2 t$ = varians total

Untuk mengetahui reliabilitas sebuah data tinggi ataukah rendah dapat dilihat melalui interpretasi reliabilitas seperti yang tertera di bawah ini:

Tabel 3.5 Kriteria Reliabilitas

Interval	Interpretasi
0,00 - 0,20	Sangat Rendah
0,20-0,40	Rendah
0,41 - 0,60	Cukup
0,61 - 0,80	Tinggi
0,81 – 1,00	Sangat Tinggi

Sumber: Arikunto (2010, hlm. 214)

Dalam pengujian reliabilitas, penelitian ini menggunakan perangkat lunak *Anates V4*. Uji reliabilitas soal apabila $r_{xy} > r_{tabel}$ maka soal tersebut dinyatakan reliabel, di mana r_{tabel} yang digunakan dalam penelitian ini adalah 0,32. Hasil uji reliabilitas pada penelitian ini dinyatakan reliabel karena reliabilitas $> r_{tabel}$ yaitu 0,79 > 0,32. Hasil itupun dapat dikategorikan reliabel dengan interpretasi tinggi. Untuk mendukung pernyataan sebelumnya, data terdapat pada Tabel 3.6 di bawah ini.

Tabel 3.6 Hasil Uji Reliabilitas Instrumen

Reliabilitas	r table	Kriteria
0,79	0.32	Reliabel

Sumber: Lampiran 6

3.6.3 Tingkat Kesukaran Soal

Tingkat kesukaran butir soal merupakan rasio antara penjawab dengan benar dan banyaknya penjawab butir soal. Tingkat kesukaran soal merupakan

suatu parameter untuk menyatakan bahwa butir soal tersebut mudah, sedang, atau sukar. Untuk mengetahui tingkat kesukaran (TK) dari masing-masing butir soal tes dilakukan melalui langkah-langkah sebagai berikut:

a. Menghitung jawaban yang benar per butir soal

b. Menghitung melalui rumus:

$$P = \frac{B}{JS}$$

(Sudijono, 2012, hlm. 372)

Keterangan:

P = Indeks tingkat kesukaran butir soal

B = Jumlah siswa yang menjawab dengan benar per item soal

JS = Jumlah siswa yang mengikuti tes

Sama halnya dengan uji validitas dan uji reliabilitas, untuk mengetahui tingkat kesukaran butir soal terdapat interpretasi yang digunakan menurut Robert L. Thorndiker dan Elizabeth (Sudijono, 2012, hlm. 372) yang dapat dilihat di bawah ini:

Tabel 3.7 Kriteria Tingkat Kesukaran Soal

Besarnya Indeks	Interpretasi
$0.70 \le P \le 1.00$	Mudah
$0.30 \le P \le 0.70$	Sedang
$0.00 \le P \le 0.30$	Sukar

Sumber: Arikunto, 2009, hlm. 210

Menghitung tingkat kesukaran soal instrumen sama halnya dengan pengujian validitas maupun reliabilitas yaitu menggunakan perangkat lunak *Anates V4*. Hasil tingkat kesukaran dalam perangkat lunak tersebut bukan dalam bentuk desimal melainkan bentuk persen. Dengan menyesuaikan hasil tingkat kesukaran dari Anates V4 dengan kriteria tingkat kesukaran pada tabel 3.7 maka, data akhir tingkat kesukaran dapat dilihat pada Tabel 3.8 di bawah ini.

Tabel 3.8

Hasil Uji Tingkat Kesukaran Butir Soal

	8	
No Soal	Tingkat Kesukaran	Kriteria
1	0,66	Sedang
2	0,65	Sedang
3	0,82	Mudah
4	0,79	Mudah
5	0,65	Sedang

Sumber: Lampiran 6

3.6.4 Daya Pembeda Soal

Berdasarkan definisi menurut Sudijono (2012, hlm. 386) daya pembeda soal adalah kemampuan suatu soal untuk membedakan antara siswa yang berkemampuan tinggi dengan siswa yang berkemampuan rendah. Angka yang menunjukkan besarnya daya pembeda soal disebut dengan Indeks Diskrimanis (D). Langkah-langkah sistematikanya adalah sebagai berikut.

- a. Untuk kelompok kecil seluruh kelompok tes dibagi dua sama besar 50% kelompok atas (JA) dan 50% kelompok bawah (JB).
- b. Untuk kelompok besar hanya diambil kedua kutubnya saja yaitu 27% skor teratas sebagai kelompok atas (JA) dan 27% skor terbawah sebagai kelompok bawah (JB).

Daya pembeda soal digunakan untuk menganalisis dari hasil instrumen penelitian dalam hal ini tingkat perbedaan setiap butir soal. Daya pembeda dapat dihitung dengan menggunakan rumus sebagai berikut:

$$D = \frac{B_A}{J_A} - \frac{B_B}{J_B} = P_A - P_B$$

(Arikunto, 2006, hlm. 2013)

Keterangan:

D = Indeks diskriminasi (daya pembeda soal)

 J_A = Jumlah siswa kelompok atas

J_B = Jumlah siswa kelompok bawah

B_A = Jumlah siswa kelompok atas yang menjawab benar

B_B = Jumlah siswa kelompok bawah yang menjawab benar

P_A = Proporsi siswa kelompok atas yang menjawab benar

P_B = Proporsi siswa kelompok bawah yang menjawab benar

Apabila sudah diketahui indeks diskriminasi dari setiap butir soal, terdapat kriteria yang digunakan untuk menginterpretasi nilai indeks diskriminasi tersebut. Di bawah ini terdapat tabel kriteria menurut Arikunto (2006, hlm. 209) mengenai daya pembeda soal:

Tabel 3.9 Kriteria Daya Pembeda Soal

Interval	Kriteria
≤ 0,00	Sangat Jelek
0,00 - 0,20	Jelek
0,20-0,40	Cukup
0,40-0,70	Baik
0,70 - 1,00	Sangat Baik

Sumber: Arikunto (2006, hlm. 209)

Pun pada pengujian daya pembeda soal, penelitian ini menggunakan perangkat lunak Anates V4. Menggunakan acuan kriteria daya pembeda soal pada tabel 3.9 di atas, maka hasil dari pengujian daya beda dapat dilihat pada Tabel 3.10 di bawah ini.

Tabel 3.10 Hasil Uji Daya Pembeda Instrumen

No Soal	Rata-rata Kelas Atas (UN)	Rata-rata Kelas Bawah (AS)	Daya Pembeda	Kriteria
1	5,27	2,73	0,42	Baik
2	5,45	2,36	0,51	Baik

Dhea Sahira Nurruhyani, 2018

PENGARUH PENERAPAN MODEL COOPERATIVE LEARNING TEKNIK STUDENT-TEAM ACHIEVEMENT DIVISION (STAD) TERHADAP KEMAMPUAN BERPIKIR KRITIS SISWA PADA MATA PELAJARAN EKONOMI Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

3	4,00	2,64	0,34	Cukup
4	1,91	1,27	0,31	Cukup
5	3,27	2,00	0,31	Cukup

Sumber: Lampiran 6

Hasil pengujian validitas, reliabilitas, tingkat kesukaran, dan daya pembeda pada soal instrumen penelitian ini dapat disimpulkan dengan tabel rekapitulasi uji coba instrumen yang dapat dilihat pada Tabel 3.11 di bawah ini.

Tabel 3.11 Rekapitulasi Uji Coba Instrumen

No	Validitas No		K	esukaran	Daya Pembeda		Ket
110	Korelasi	Kes	TK	Penafsiran	Pembeda	Penafsiran	Ket
1.	0,758	Valid	0,66	Sedang	0,42	Baik	Digunakan
2.	0,788	Valid	0,65	Sedang	0,51	Baik	Digunakan
3.	0,626	Valid	0,82	Mudah	0,34	Cukup	Digunakan
4.	0,577	Valid	0,79	Mudah	0,31	Cukup	Digunakan
5.	0,599	Valid	0,65	Sedang	0,31	Cukup	Digunakan

Sumber: Lampiran 6

Berdasarkan rekapitulasi uji coba instrumen pada tabel di atas dapat ditarik kesimpulan bahwa ke-lima soal uraian yang telah diujicobakan kepada siswa digunakan untuk penelitian.

3.7 Teknik Pengolahan Data

Apabila data telah terkumpul, langkah selanjutnya yang harus dilakukan adalah mengolah data penelitian yang meliputi hasil tes kemampuan berpikir kritis. Adapun langkah-langkah sistematikanya adalah sebagai berikut.

1. Penskoran

Menghitung jawaban tes siswa berdasarkan jawaban siswa yang benar.

2. Mengubah skor mentah menjadi nilai standar

Pengolahan dan pengubahan skor mentah menjadi nilai dihitung menggunakan nilai standar (PAP) yaitu sebagai berikut:

Nilai =
$$\frac{skor\ mentah}{skor\ maksimum\ ideal} \times 100$$

3.8 Teknik Analisis Data

Langkah selanjutnya dalam merampungkan penelitian ini adalah analisis data. Langkah-langkah sistematikanya adalah sebagai berikut:

- a. Mencari nilai minimum
- b. Mencari nilai maksimum
- c. Menghitung nilai rata-rata atau Mean Ideal (MI) dari nilai standar yang dihasilkan melalui rumus:

$$MI = \frac{1}{2} x SMI$$

d. Menghitung Standar Deviasi (SD) dari nilai standar yang dihasilkan melalui rumus:

$$SD = \frac{1}{3} \times SMI$$

e. Uji Gain

Dalam penelitian ini uji gain yang digunakan adalah normal gain. Menurut Nurramdani (2012, hlm. 62) normal gain digunakan untuk mengetahui peningkatan hasil belajar setelah pembelajaran dilaksanakan. Untuk mengetahui nilai normal gain dapat dihitung melalui rumus:

$$\langle g \rangle = \frac{\% \langle G \rangle}{\% \langle G \rangle max} = \frac{\% (Sf) - \% (Si)}{100 - \% (Si)}$$

(Hake, 1999, hlm. 1)

Skor normal gain kemudian diinterpretasikan untuk menyatakan peningkatan hasil belajar siswa. Menurut Hake (1999, hlm. 1), kriteria indeks gain adalah sebagai berikut:

Tabel 3.12

Kriteria Indeks Gain

Skor	Kriteria
$(g) \ge 0.70$	Tinggi
$0.30 \le (g) < 0.70$	Sedang
(g) < 0.30	Rendah

Sumber: Hake (1999, hlm. 1)

3.9 Uji Hipotesis

Untuk menguji hipotesis terlebih dahulu diperlukan langkah-langkah yang harus diukur yaitu uji normalitas distribusi data dan uji homogenitas varian data. Di bawah ini merupakan penjelasan mengenai langkah-langkah yang digunakan dalam penelitian:

3.9.1 Uji Normalitas

Uji normalitas dilaksanakan untuk mengetahui normal atau tidaknya suatu distribusi data. Kondisi data berdistribusi normal menjadi syarat untuk menguji hipotesis menggunakan statistik parametrik. Tanpa data yang normal, hipotesis akan mengalami kesulitan untuk diuji.

Uji normalitas distribusi data yang digunakan dalam penelitian ini adalah uji normalitas *Kolmogorov Smirnov* yang diolah menggunakan aplikasi SPSS 16.0. Kriteria ideal uji normalitas adalah apabila signifikansi lebih besar dari pada 0,05 maka data berdistribusi normal. Adapun kriteria lengkap uji normalitas adalah sebagai berikut:

- a. Jika level signifikansi (sig) > 0,05, maka data berdistribusi normal.
- b. Jika level signifikansi (sig) < 0,05, maka data tidak berdistribusi normal.

3.9.2 Uji Homogenitas

Salah satu syarat dalam menggunakan uji *t* untuk sampel kecil yaitu kondisi yang disebut homogenitas varian. Uji homogenitas adalah pengujian mengenai sama tidaknya variansi-variansi dua buah distribusi atau lebih. Uji

60

kesamaan varians adalah uji dalam analisis data yang bertujuan untuk mengetahui apakah kelas-kelas tersebut mempunyai varian yang sama atau tidak. Dikatakan homogen jika kelas mempunyai varian yang sama.

Perumusan hipotesis yang digunakan pada uji homogenitas varian adalah sebagai berikut :

 H_0 = Tidak terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol

 H_1 = Terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol.

Uji homogenitas dilakukan dengan uji *leavene* dengan mengguakan SPSS 16.0., dengan taraf signifikansi 5%. Adapun kriteria lengkapnya sebagai berikut :

- 1. Jika signifikansi (sig) pengujiannya lebih kecil dari 0,05, maka H₀ ditolak.
- 2. Jika signifikansi (sig) pengujiannya lebih besar atau sama dengan 0,05 maka H₀ diterima.

3.9.3 Uji Signifikansi

Uji signifikansi hipotesis dalam penelitian ini menggunakan dua uji analisis yaitu *Paired Sample T-Test* dan *Independent Sample T-Test* menggunakan olahan data SPSS versi 16.0.

• Paired Sample T Test

Paired-samples t test digunakan untuk menguji dua buah rata-rata sebagai hasil pengukuran sebelum diberi perlakuan dan setelah diberi perlakuan pada satu kelompok sampel eksperimen yang sama, di bawah ini merupakan rumus yang digunakan:

$$t = \frac{\sum D}{\frac{\sqrt{(n\sum D^2) - (\sum D)^2}}{n-1}}$$

(Kusnendi, 2015, hlm. 5)

Dimana:

D = Perbedaan nilai data setiap pasangan anggota sampel (Y1 – Y2)

n = Ukuran

Kriteria Uji, H₀ dapat ditolak jika : p - value (Sig) ≤ 0.05

• Independent Sample T Test

Uji signifikansi perbedaan antara dua rata-rata (*mean*) dua kelompok sampel eksperimen yang tidak berhubungan. Adapun rumus uji t adalah sebagai berikut:

$$t = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

(Kusnendi, 2015, hlm. 4)

Keterangan:

 \overline{Y}_1 dan \overline{Y}_2 = Nilai rata-rata sampel

 $S_1^2 \text{dan} S_2^2 = \text{Varians sampel}$

 $n_1 \operatorname{dan} n_2 = \operatorname{Ukuran sampel}$

Untuk menentukan signifikasi perbedaan antara dua mean tersebut, diperlukan tabel statistik *critical value of t*. Bila:

- Jika thitung> ttabel, maka H0 ditolak dan Ha diterima
- Jika t_{hitung}< t_{tabel}, maka H₀ diterima dan Ha ditolak.

Hipotesis yang diuji dalam penelitian ini adalah:

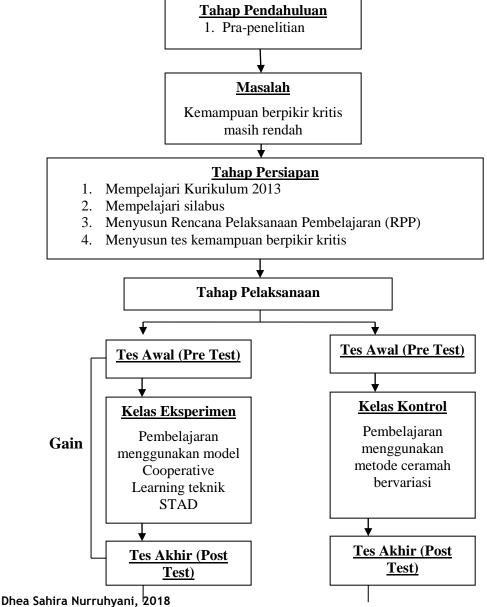
1. H_0 : $\mu_1 = \mu_2$

Tidak terdapat perbedaan kemampuan berpikir kritis siswa kelas eksperimen antara sebelum dan setelah diberi perlakuan Model *Cooperative Learning* Teknik STAD pada materi Lembaga Jasa Keuangan dalam Perekonomian Indonesia.

$$H_a : \mu_1 \neq \mu_2$$

Terdapat perbedaan kemampuan berpikir kritis siswa kelas eksperimen antara sebelum dan setelah diberi perlakuan Model *Cooperative Learning* Teknik STAD pada materi Lembaga Jasa Keuangan dalam Perekonomian Indonesia.

2. H_0 : $\mu_1 = \mu_2$


Tidak terdapat perbedaan peningkatan kemampuan berpikir kritis siswa antara kelas eksperimen yang diberi perlakuan Model *Cooperative Learning* Teknik STAD dengan kelas kontrol yang menggunakan metode

ceramah bervariasi pada materi Lembaga Jasa Keuangan dalam Perekonomian Indonesia.

$$H_a$$
 : $\mu_1 \neq \mu_2$

Terdapat perbedaan peningkatan kemampuan berpikir kritis siswa antara kelas eksperimen yang diberi perlakuan Model *Cooperative Learning* Teknik STAD dengan kelas kontrol yang menggunakan metode ceramah bervariasi pada materi Lembaga Jasa Keuangan dalam Perekonomian Indonesia.

3.10 Prosedur Penelitian

PENGARUH PENERAPAN MODEL COOPERATIVE LEARNING TEKNIK STUDENT-TEAM ACHIEVEMENT DIVISION (STAD) TERHADAP KEMAMPUAN BERPIKIR KRITIS SISWA PADA MATA PELAJARAN EKONOMI Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Tahap Akhir

- 1. Pengolahan dan analisis data
- 2. Pembahasan
- 3. Kesimpulan dan saran

Gambar 3.1 Prosedur Penelitian