PEMBUATAN TUNGKU *CRUCIBLE* TIPE PENUANGAN TUKIK
KAPASITAS 10 KG DENGAN BAHAN BAKAR GAS LPG

TUGAS AKHIR
Diajukan untuk Memenuhi Salah Satu Persyaratan Penyusunan Tugas Akhir dan
Memperoleh Gelar Ahli Madya di Departemen Pendidikan Teknik Mesin

Oleh:
MUHAMMAD AUFAR LUTHFAN D
NIM.1506851

PROGRAM DIPLOMA TEKNIK MESIN
DEPARTEMEN PENDIDIKAN TEKNIK MESIN
FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN
UNIVERSITAS PENDIDIKAN INDONESIA
2018
ABSTRAK

Muhammad Aufar Luthfan D, 1506851: Pembuatan Tungku Crucible Tipe Penuangan Tukik Kapasitas 10 Kg Dengan Bahan Bakar Gas LPG.

Penyusunan Tugas Akhir (TA) ini bertujuan untuk membuat alat tungku crucible penuangan tukik di workshop FPTK UPI, serta untuk memperoleh gambaran nyata tentang waktu dan biaya yang dibutuhkan dalam pembuatan tungku crucible. Pembuatan tungku crucible sendiri terdiri dari berbagai macam bahan material. Pembuatan kontruksi casing tungku dan tutup tungku ini menggunakan bahan sheet metal MS (mild steel) ASTM A36, pembuatan kowi peleburan menggunakan bahan stainless steel 304 dan untuk castable dipasang disekeliling sebagai dinding pada tungku crucible. Proses pembuatan komponen ini dilakukan melalui proses pemotongan menggunakan mesin blander asetilin pada bahan sheet metal MS (mild steel) ASTM A36 dan pemotongan menggunakan plasma cutting pada bahan stainless steel 304, dilanjutkan proses pengerolan plat yang sudah dipotong, lalu dilakukan pengelasan GMAW pada casing dan tutup tungku dan pengelasan GTAW pada kowi untuk menyambung plat yang sudah dirol. Setelah dilakukan perakitan tungku crucible baru dilakukan proses pemasangan castable. Secara real waktu yang diperlukan adalah 35 jam 38 menit dengan total biaya Rp.4.516.250,00 (termasuk biaya material dan biaya fabrikasi). Hasil pengujian yang terdapat dalam pembuatan tungku crucible adalah alumunium paduan mempunyai titik lebur 660°C, dengan suhu penuangan 726°C. Waktu yang diperlukan dalam sekali peleburan adalah ± 60 menit dengan kebutuhan gas LPG ± 5-8 Kg.

Kata kunci: pembuatan tungku penuangan tukik, kowi crucible, proses pemasangan castable.
DEPARTEMEN PENDIDIKAN TEKNIK MESIN

Oleh
Muhammad Aufar Luthfan D

Sesuah Tugas akhir yang diajukan untuk memenuhi salah satu syarat memperoleh gelar Diploma III pada Fakultas Pendidikan Teknologi dan Kejuruan

© Muhammad Aufar Luthfan D 2019
Universitas Pendidikan Indonesia
Mei 2019

Hak Cipta dilindungi undang-undang.
Tugas akhir ini tidak boleh diperbanyak seluruhya atau sebagian, dengan dicetak ulang, difoto kopi, atau cara lainnya tanpa ijin dari penulis.
DAFTAR ISI

LEMBAR PENGESAHAN
ABSTRAK ................................................................................................................ii
KATA PENGANTAR ...................................................................................................ii
UCAPAN TERIMAKASIH .........................................................................................iii
DAFTAR ISI ..............................................................................................................iv
DAFTAR TABEL ........................................................................................................ix
DAFTAR GAMBAR ..................................................................................................x
DAFTAR NOTASI ...................................................................................................xiii

BAB I PENDAHULUAN ......................................................................................... 1
A. Latar Belakang ........................................................................................................ 1
B. Batasan Pembahasan ............................................................................................ 2
C. Rumusan Masalah ................................................................................................. 2
D. Tujuan ................................................................................................................... 2
E. Manfaat ................................................................................................................ 3
F. Sistematika Penulisan .......................................................................................... 3

BAB II LANDASAN TEORI ............................................................................... 5
A. Tungku Peleburan ................................................................................................ 5
B. Klasifikasi Tungku ............................................................................................... 6
  1. Crucible Furnace (Tungku Krusibel) ................................................................ 6
  2. Tungku Kupola .................................................................................................. 11
  3. Tungku Busur Listrik ....................................................................................... 12
  4. Tungku Induksi .................................................................................................. 13
  5. Tungku Converter .............................................................................................. 14
  6. Tungku Thomas dan Bessemer ....................................................................... 16
C. Alumunium Dalam Pengecoran ......................................................................... 17
D. Pemotongan Plasma (Plasma Cutting) ............................................................... 22
1. Prinsip Kerja Plasma Cutting ................................................................. 24
E. Rolling Bending ..................................................................................... 24
   1. Prinsip Kerja ...................................................................................... 25
F. Pengelasan .......................................................................................... 27
   1. Pengelasan GMAW .......................................................................... 28
   2. Pengelasan Acetylene ...................................................................... 36
   3. Pengelasan GTAW .......................................................................... 42
G. Teknik Pengelasan Untuk Jenis Sambungan ........................................ 47
H. Klarifikasi Sambungan Las .................................................................. 50
   1. Sambungan Tumpul .......................................................................... 50
   2. Sambungan T .................................................................................... 51
   3. Sambungan Sudut ............................................................................. 51
I. Simbol Las ........................................................................................... 52
J. Bahan Tahan Api .................................................................................. 55
K. Perpindahan Panas (Heat Transfer) ...................................................... 59
   1. Perpindahan Panas secara Konduksi ................................................ 59
BAB III METODA PEMBAHASAN .................................................................. 62
   A. Metoda .............................................................................................. 62
   B. Bagian-Bagian Gambar Tungku ....................................................... 63
   C. Alat-Alat Yang Digunakan ............................................................... 64
   D. Material ............................................................................................. 65
   E. Rencana Kerja Pembuatan Tungku Crucible .................................... 67
      1. Rencana Pengerjaan casing tungku crucible .................................. 68
      2. Rencana Pengerjaan tutup tungku crucible .................................... 68
      3. Rencana Pengerjaan kowi peleburan ............................................. 68
      4. Rencana Perakitan Tungku Crucible .............................................. 68
F. Langkah-Langkah Pembuatan *Casing* Tungku *Crucible*..........................69  
G. Langkah-Langkah Pembuatan Tutup Tungku........................................75  
H. Langkah-Langkah Pembuatan Kowi Peleburan........................................82  
I. Langkah-Langkah Perakitan Tungku *Crucible*......................................89  

**BAB IV PERHITUNGAN DAN HASIL** ..................................................95  
A. Kapasitas Kowi (Cawan Lebur)..............................................................95  
B. Perhitungan Ukuran Material Untuk Pengerolan.................................96  
  1. Perhitungan Plat *Casing* Tungku.........................................................96  
  2. Perhitungan Plat Tutup Tungku..........................................................96  
  3. Perhitungan Plat Kowi Peleburan.......................................................97  
C. Perhitungan Kebutuhan Material ..........................................................97  
  1. Perhitungan Massa Plat *Sheet Metal* MS Keseluruhan.........................97  
  2. Perhitungan Massa Plat *Casing* Tungku ...........................................98  
  3. Perhitungan Massa Plat Tutup Tungku...............................................98  
  4. Perhitungan Massa Kowi Peleburan....................................................99  
D. Perhitungan Waktu Teoritis Pemotongan Menggunakan Mesin *Blander* Asetilin..........................................................100  
  1. Perhitungan Waktu Pemotongan Material *Casing* Tungku *Crucible* 
    Menggunakan Mesin *Blander* Asetilin .............................................100  
  2. Perhitungan Waktu Pemotongan Material Tutup Tungku Menggunakan 
    Mesin Blander Asetilin ......................................................................101  
  3. Perhitungan Waktu Pemotongan untuk Lubang Saluran Pembakaran dan 
    Cerobong Menggunakan Mesin *Blander* Asetilin ................................102  
  4. Perhitungan Waktu Pemotongan untuk Lubang Poros Rangka 
    Menggunakan Mesin *Blander* Asetilin .............................................103  
E. Waktu *Real* Proses Pemotongan Menggunakan Mesin *Blander* Asetilin 104  
F. Waktu *Real* Proses Pengelasan ...........................................................104
G. Waktu Real Proses Pengerolan ................................................................. 106
H. Waktu Real Pembuatan Jalur Pengeluaran Hasil Pengecoran .................. 106
I. Waktu Real Pembuatan Komponen Pendukung .................................... 107
J. Waktu Real Pemasangan Castable ....................................................... 108
K. Biaya Produksi .................................................................................... 108
1. Biaya Total Material ........................................................................ 108
2. Biaya Fabrikasi ................................................................................ 109
L. Hasil pengujian .................................................................................. 111

BAB V KESIMPULAN DAN SARAN ......................................................... 112
A. Kesimpulan ....................................................................................... 112
B. Saran ................................................................................................ 112

DAFTAR PUSTAKA ................................................................................ 114

LAMPIRAN
DAFTAR PUSTAKA

Anonimus. (t.t). Diklat Las MIG Teknik Pengelasan. Online. [tersedia]: (http://staff.uny.ac.id/sites/default/files/MIG.pdf diakses pada tanggal 10 Oktober 2018)


Dadang. (2013). Teknik Las GTAW. Malang : Kementrian Pendidikan dan Kebudayaan


Muhammad Aufar Luthfan D/ 1506851

PEMBUATAN TUNGKU *CRUCIBLE* TIPE PENUANGAN TUKIK
KAPASITAS 10 KG DENGAN BAHAN BAKAR GAS LPG

DISETUJUI DAN DISAHKAN OLEH PEMBIMBING:
Dosen Pembimbing

Drs. H. Dede Suhayat, M. Pd.
NIP. 19540706 198103 1 006

Mengetahui,
Dosen Penanggung Jawab Tugas Akhir

Drs. Yayat, M. Pd.
NIP. 19680501 199302 1 001

Mengetahui,
Ketua Program Studi D3 Teknik Mesin

Drs. Tatang Permana, M. Pd.
NIP. 19651110 199203 1 007