BAB III

METODE PENELITIAN

3.1 Desain Penelitian

Berdasarkan hasil penelitian yang dilaksanakan pada tanggal 5 Januari 2017 di area Pabrik Semen Unit 11 Citereup, maka diperoleh data single line diagram sistem kelistrikan pabrik, data spesifikasi peralatan pabrik dan data proteksi pabrik. Maka setelah itu akan dibuat simulasi starting motor di software ETAP 12.6. Dengan simulasi starting motor tersebut, maka akan diketahui banyak hal yang terjadi pada saat motor-motor besar dinyalakan, diantaranya: penurunan tegangan sesaat (*voltage sag*), penarikan arus yang besar yang disebut *inrush current*, aliran daya pada bus-bus dan beban-beban lain, dan lain-lain. Kemudian akan dilakukan pula simulasi pelepasan beban dengan *transient stability analysis study case* untuk melihat adanya lonjakan tegangan pada saat beban dilepaskan dari sistem.

3.2 Partisipan dan Tempat Penelitian.

Pelaksanakan penelitian ini bekerja sama dengan pihak Pabrik Semen Unit 11 Citereup yang berlokasi di Jalan Mayor Oking Jayaatmaja, Citeureup, Bogor, Jawa Barat.

3.3 Metode Pengumpulan Data.

Dalam skripsi ini penulis membuat simulasi *starting motor* dan pelepasan beban berkapasitas besar menggunakan software ETAP 12.6. Agar simulasi bisa dibuat dengan baik maka dibutukan pengambilan data-data dari sistem kelistrikan yang ada. Oleh karena itu ada beberapa kegiatan yang dilakukan penulis berkaitan dengan pengumpulan data, yaitu sebagai berikut :

1. Observasi (Pengamatan Langsung).

Pengambilan data dengan motode observasi (pengamatan langsung) dilakukan dengan mencari data-data teknis secara langsung ke lapangan, data tersebut berupa *single line diagram*, spesifikasi motor,

33

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

data bus, spesifikasi transformator, data *lumped load* dan data pengoperasian dan proteksi motor.

2. Wawancara

Pengambilan data dengan metode wawancara dilakukan dengan cara konsultasi dengan pembimbing penelitian lapangan dan karyawan bagian elektrik di *Unit 11*.

3. Dokumentasi atau Literatur.

Pengambilan data dengan metode dokumentasi atau literatur dilakukan dengan cara mengumpulkan materi-materi yang berhubungan dengan penelitian ini baik itu yang berasal dari buku ajar, jurnal internasional, jurnal lokal atau pun artikel ilmiah.

3.4 Analisis Data

Penelitian ini merupakan sebuah analisis mengenai efek dari *starting* dan pelepasan beban motor-motor berkapasitas besar, khususnya mengenai adanya *voltage sag* dan *voltage swell* yang merupakan suatu fenomena gangguan yang terjadi pada sistem kelistrikan. Gangguan ini bisa berasal dari arah sumber tegangan listrik maupun dari dalam sistem itu sendiri. Banyak hal yang dapat memunculkan gangguan tersebut, tersebut diantaranya disebabkan oleh *starting* motor berkapasitas besar yang merupakan bagian dari sistem. Setelah data berhasil dikumpulkan, maka penulis akan merancang sebuah simulasi *starting* dan pelepasan beban motor berkapasitas besar, yang direncanakan dalam beberapa tahapan sebagai berikut :

- 1. Perancangan Simulasi pada Software ETAP 12.6 untuk Mengetahui Besar *Sag* dan *Swell* akibat Pengoperasian Motor.
- 2. Studi Literatur dan Pengumpulan Data Lapangan.
- 3. Pemodelan *Single Line Diagram* dan Penyusunan Skema Simulasi *Starting* dan Pelepasan Beban Motor.
- 4. Melakukan input data teknis, seperti data *powergrid*, data *bus*, data transformator, data motor induksi, dan data *lumped load*.

Rizky Nursani, 2017

- 5. Perancangan Motor Starting Study Case & Transient Stability Analysis Study Case.
- 6. Memasukan data teknis pada *Motor Starting Study Case & Transient Stability Analysis Study Case* seperti rentang waktu simulasi, pemilihan motor, pengaturan urutan simulasi.
- 7. Melakukan simulasi *starting* motor dan pelepasan beban yang dipilih.
- 8. Menganalisa data hasil simulasi *starting* motor dan pelepasan beban.

Rizky Nursani, 2017

Rizky Nursani. 2017

repository.upi.edu | perpustakaan.upi.edu

ANALISI VOLT Gambar 3.1 Diagram alir penelitian. BES SISTEM KELIS I RIKAN PABRIK SEMEN

BESAR PADA

3.5 Sistem Kelistrikan Pabrik Semen Unit 11 Citereup

Unit 11 merupakan salah satu dari unit-unit pabrik semen yang ada di komplek pabrik semen Citereup. Untuk sumber daya listrik, Unit 11 disuplai oleh bus bertegangan 33 kV yang berasal dari area utility yang bersumber dari gabungan antara pembangkit listrik perusahaan dan PLN. Rasio penggunaan daya dari PLN saat ini masih sangat besar yaitu sekitar kurang lebih 80% dari keseluruhan suplai daya. Suplai daya dari area utility ini kemudian diturunkan tegangannya dari 33 kV ke 6.6 kV di Unit 11 menggunakan dua buah transformator daya, yaitu Transformator KE11-1T1 dan Transformator KE11-1T2 yang masing-masing berkapasitas 30 MVA. Keluaran dari dua transformator tersebut masuk ke 2 bus 6.6 kV, bus MSS (KE211S1) dan bus MSS (KE211S2) yang satu sama lain bisa dihubungkan dengan *coupling bus* apabila terjadi kasus gangguan atau perbaikan salah satu transformator, maka salah satu transformator dapat mensuplai daya ke beban yang lain. Bus MSS (KE211S1) dan bus MSS (KE211S2)telah dilengkapi dengan *circuit breaker* dan relay proteksi, untuk mengamankan sistem dari berbagai gangguan yang mungkin terjadi.

Tegangan 6.6 kV ini umumnya digunakan untuk mensuplai beban-beban motor induksi berkapasitas besar dengan rating kapasitas mencapai ratusan hingga ribuan kilowatt. Kemudian dari tegangan bus 6.6 kV diturunkan pula menjadi tegangan 690 V, 660 V dan 400 V. Tegangan rendah ini digunakan oleh beban-beban yang relatif lebih kecil, diantaranya untuk: motor-motor induksi berkapasitas sedang dan kecil, *rectifier/rharger* motor-motor DC, penerangan, panel-panel listrik dan keperluan-keperluan lainnya yang dibutuhkan oleh pabrik. Tabel 3.1 menunjukan data spesifikasi daya dan beban operasional dari *utility*.

Tabel 3.1 Data Suplai Daya Unit 11

ID	Туре	Tegangan (kV)	MVAsc	Mode Operasi	PF
----	------	------------------	-------	-----------------	----

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

Utility 1	Powergrid	33	1000	swing	89 %
Utility 2	Powergrid	33	1000	swing	89 %

[Sumber: Pabrik Semen Unit 11 Citereup]

3.6 Pembagian Kerja Sistem

Proses produksi semen realtif rumit, sehingga dalam proses terebut, maka kegiatan produksi harus dibagi menjadi area-area kerja. Proses produksi di *Unit* 11 melibatkan beberapa area kerja utama, yaitu *Raw Mill, Kiln, Cement Mill* dan *Packing Unit*. Di masing-masing area tersebutlah terdapat beban-beban yang membutuhkan supplai daya listrik. Tabel 3.2 menjelaskan beberapa area kerja dan masing-masing tugasnya.

Tabel 3.2 Pembagian Area Kerja Unit 11

Kode	Area	Kerja yang dilakukan
LSS 1/2	Limestone Preblending	Mencampur bahan baku.
LSS 3	Raw Material	Menggiling bahan baku.
LSS 4	Kiln Feed & Kiln	Memproses bahan baku.
LSS 4 C	Coal Grinding	Menggiling Batu Bara.
LSS 5	Clinkerzation	Memproses klinker.
LSS 6A	Finish Grinding & Cement Storage	Menggiling dan menyimpan semen.
LSS 6B	Finish Grinding & Cement Storage	Menggiling dan menyimpan semen.
LSS 7	Cement Packing & Bulk Loading	Mengemas semen.

[Sumber: Pabrik Semen Unit 11 Citereup]

3.7 Data Transformator

Rizky Nursani, 2017

Transformator daya digunakan untuk menurunkan tegangan agar sesuai dengan beban-beban yang ada. Tabel 3.3 menunjukan transformator yang terdapat di *Unit 11*.

ID	Туре	kV	MVA
KE11-1T1	2 winding	33/6.6	30
KE11-1T2	2 winding	33/6.6	30
ID	Туре	kV	MVA
KE21-1T1 (UTILITY)	2 winding	6.6/0.4	2
KE21-1T2	2 winding	6.6/0.4	0.5
KE21-1T2 (AUX)	2 winding	6.6/0.4	0.5
KE41-1T1 (LIGHTING)	2 winding	6.6/0.4	1
KLP1-1T1	2 winding	6.6/0.4	3
K2P1-1T1	2 winding	6.6/0.4	1
K2P1-1T2	2 winding	6.6/0.4	1
K3P1-1T1	2 winding	6.6/0.4	1
K3P1-1T2	2 winding	6.6/0.4	1
K3P1-1T3	2 winding	6.6/0.4	1.6
K3P1-1T4	2 winding	6.6/0.4	0.4
K4P1-1T1	2 winding	6.6/0.4	1
K4P1-1T2	2 winding	6.6/0.4	0.8
K4P1-1T3	2 winding	6.6/0.4	1.6
K4P1-1T4	2 winding	6.6/0.4	1.6
K4P1-1T5	2 winding	6.6/0.4	1
K4P1-1T6	2 winding	6.6/0.69	2.5
K4P1-1T7	2 winding	6.6/0.69	2.5
K4P1-1T9	2 winding	6.6/0.4	0.8
K5P1-1T1	2 winding	6.6/0.4	1.6
K5P1-1T2	2 winding	6.6/0.69	0.4
K5P2-1T1	2 winding	6.6/0.4	1.6

Tabel 3.3 Data Transformator Unit 11

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

K5P2-1T2	2 winding	6.6/0.4	4
K4P1-1T8	3 winding	6.6/0.4	2

[Sumber: Pabrik Semen Unit 11 Citereup]

3.8 Pembagian Beban

Karena beban-beban yang terdapat di *Unit 11* sangatlah banyak maka, datadata beban dikelompokan menjadi 2 bagian yaitu motor dan *lumped load. Lumped load* sendiri merupakan sebuah sub-sistem yang di dalamnya terdapat bermacammacam beban, namun karena jumlahnya begitu banyak, maka untuk memudahkan, beban-beban tersebut cukup diwakili oleh *lumped load*.

Tabel 3.4 Beban Unit 11

ID Beban	Туре	kV	PF (%)	kW	kVA
K562-MD2-MO1	Motor	6.6	93.14	4800	
K562-MD1-MO1	Motor	6.6	92.83	2300	
K562SR2MO1	Motor	0.69	92.11	400	
K562-FN1-MO1	Motor	6.6	92.4	800	
K561-MD2-MO1	Motor	6.6	93.14	4800	
K561-MD1-MO1	Motor	6.6	92.83	2300	
K561SR2MO1.	Motor	0.69	91.59	400	
K561-FN1-MO1	Motor	6.6	92.4	800	
K541HC1MO1	Motor	6.6	91.83	450	
K441-FN1-MO1	Motor	0.69	92.72	1750	
K442-FN1-MO1	Motor	0.69	92.72	1750	
KL41-MD1-MO1	Motor	6.6	92.4	800	
KL61-FN1-MO1	Motor	6.6	92.4	800	
K361-MD1-MO1	Motor	6.6	93.15	5000	
K322-FN1-MO1	Motor	6.6	93.06	4000	
K5P2-1V1	Lumped	0.4	85		1200
KE31-1V1	Lumped	0.4	85		1500

Rizky Nursani, 2017

KE31-1V2	Lumped	0.4	85		400
KE41-1N1	Lumped	0.4	85		800
KE41-1N3	Lumped	0.4	85		400
KLP1-1V1	Lumped	0.4	85		1000
K2P1-1V1	Lumped	0.4	85		800
K2P1-1V2	Lumped	0.4	85		800
K3P1-1V1	Lumped	0.4	85		800
K3P1-1V2	Lumped	0.4	85		800
K3P1-1V3	Lumped	0.4	85		800
K4P1-1V1	Lumped	0.4	85		800
K4P2-1V2	Lumped	0.4	85		660
K4P2-1V3	Lumped	0.4	85		1300
K4P2-1V4	Lumped	0.4	85		1300
K4P2-1V5	Lumped	0.4	85		800
K5P1-1V1	Lumped	0.4	85		1300
K5P2-1V1	Lumped	0.4	85		1200
K-461-MD1-MO1	DC Motor	0.4	-	273	
K461-MD2-MO1	DC Motor	0.69	-	750	
K471-FNV-MO1	DC Motor	0.4	-	630	
K361-SR1-MO1	DC Motor	0.66	-	273	

[Sumber: Pabrik Semen Unit 11 Citereup]

3.9 Relay Proteksi

Unit 11 menggunakan beberapa jenis relay proteksi utama, diantaranya jenis ABB SPAJ 141C (SPC J4D29) dan ABB SPAJ 131C (SPCJ 3C3) untuk proteksi feeder, jenis ABB SPAM 150C untuk proteksi motor dan jenis ABB SPAU 130C untuk proteksi *undervoltage* dan *overvoltage*. Tabel 3.5 merupakan *datasheet* ABB SPAU 130C yang berkaitan dengan proteksi *undervoltage* dan *overvoltage*.

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

	Overvoltage stage	Start voltage U>		0.81.6 × U _n
	U>	Start time, preset values		0.1 s or 30 s
		Operate time at definite time operation cha	0.05100 s	
		Time multiplier k> at inverse time operatio	0.051.00	
		Reset time, typically	60 ms	
		Drop-off/pick-up ratio, typically	0.97	
		Operate time accuracy	at definite time characteristic and start time accuracy	±2% of set value or ±25 ms
			at inverse time mode of operation	± 25 ms or accuracy obtained at a $\pm 3\%$ variation of the input voltage
		Operation accuracy	±3% of set value	
	Undervoltage stage	Start voltage U<	0.41.2 × U _n	
	U<	Start time, preset values	0.1 s or 30 s	
		Operate time at definite time operation cha	1120 s	
		Reset time, typically	60 ms	
		Reset ratio, typically		1.03
		Operation time accuracy and start time ac	curacy	±2% of set value or ±25 ms
130C		Operation accuracy		±3% of set value

Tabel 3.5 Setting Proteksi Relay ABB SPAU

[Sumber: Data sheet Relay ABB SPAU 130C]

3.10 Single Line Diagram di ETAP 12.6

Data single line diagram perlu dimasukan ke dalam edit mode di ETAP untuk menjalankan berbagai macam simulasi yang terdapat di dalamnya. Komponen yang harus dimasukan diantaranya yaitu: *power grid, bus,* transformator, kabel, *lumped load,* motor induksi, motor DC, *rectifier, current transformer, circuit breaker, coupling switch, protection relay,* dan lain-lain.

Gambar 3.2 Editor single line diagram.

[Sumber: Software ETAP 12.6]

Gambar 3.3 Modul editor untuk membuat single line diagram.

[Sumber: Software ETAP 12.6]

	<u></u> \$-}£
BUS	.œ
00	P
≯⊜∦	@@
1 🕸	33
\$\$	\otimes
$\boxtimes \odot$	()
Ø 疑	
1	
\odot	
<u> </u>	0 {
直ち	<u> </u>
* #	₽₽
	0 4
* *	卤白
\boxtimes	۱
自十	¢ 🕴
φþ	* .
	82
(3	🖾 🖾
7 2.	

Rizky Nursani, 2017

Gambar 3.4 Toolbar komponen pada editor.

[Sumber: Software ETAP 12.6]

3.11 Pengisian Data Peralatan di ETAP 12.6

Setelah single line diagram selesai dibuat, maka langkah selanjutnya untuk menentukan spesifikasi dari komponen-komponen yang ada di dalamnya, maka perlu dimasukan data-data, beberapa yang utama meliputi: data *power grid*, data *bus*, data transformator, data kabel, data *lumped load* dan data motor induksi.

3.11.1 Pengisian data power grid

Data untuk *power grid* dapat dimasukan ke dalam *Power Grid Editor*. Data yang harus dimasukan ke dalam editor ini diantaranya: rating kV, data short circuit, grounding, daya reaktif daya nyata dan lain-lain. Gambar 3.5 merupakan tampilan dari *Power Grid Editor*.

	2-	Winding	Transf	ormer E	ditor - T	1		×
Info Rating Imped	ance Tap	Grounding	Sizing	Protection	Harmonic	Reliability	Remarks	Comment
20 MVA IEC Liquid	Fill ONWF/C	ONAN 65 C					33 6	.6 kV
Voltage Rating k' Prim. 3	3	FLA 349.9			Bus kVno 33	m	Base MV/	λ
Sec. 6.	6	1750			6.6		20	
	0	NWF/ONAN	65					
Power Rating	/A					Al	ert - Max MVA	
Rated 20 ONWF/ON	AN 65					0	20 Derated MV	'A
Derated 19.0	2					۲	User-Define	d
						- Ins	Altitud	e ft
% Derating 4.	9						Ambient	Temp.
	MFR						30	·C
Type / Class Type		Sub T	уре		Cla	ISS	Tem	ıp. Rise
Liquid-Fill	×	/lineral Oil		v 0	NWF/ONAN	I	∀ 65	*
	T1			~	×	?	ОК	Cancel

Gambar 3.5 Tampilan Power Grid Editor.

[Sumber: Software ETAP 12.6]

3.11.2 Pengisian data bus

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

Data untuk *bus* dapat dimasukan ke dalam *Bus Editor*, Data yang harus dimasukan ke dalam bus editor diantaranya rating kV nominal, sudut fasa dan tegangan inisial. Gambar 3.6 merupakan tampilan dari *Power Grid Editor*.

Info Phase V Load Motor/Gen Rating Arc Flash Protection Ha 6.6 kV 0 Amps Asymmetrical Asymmetrical Info In	
6.6 kV 0 Amps Asymmetrical Info ID Main Switchgear 1 Nominal KV 6.6 Base Bus Voltage Condition % V kV Angle Initial 100 6.6 0 Operating 0 0 0 Out Equipment Connection 3 Phase 1 Phase 3W Description Classification Load Diversity Factor	armoni
Info ID Main Switchgear 1 Fevision Data Nominal kV 6.6 Base Base Bus Voltage Condition Service Out Initial 100 6.6 0 Out Operating 0 0 0 Condition Equipment Connection Sarvice Out State As-built Connection Sarvice Description In Phase 1 Phase 3W I Phase 3W Classification Load Diversity Factor I Phase I Phase	0 kA
Nomina kv 0.0 Out Dase Bus Voltage Condition Service Initial 100 6.6 0 Out State Operating 0 0 0 Condition Equipment Connection State As-built Description Initial 1Phase 1Phase Classification Load Diversity Factor Ion	ſ
Bus Voltage Condition initial 100 6.6 0 Operating 0 0 0 Service Out State As-built Service Out State As-built Equipment Connection © 3 Phase 1 Phase 2W 1 Phase 3W 1 Phase 3W Description Load Diversity Factor Load Diversity Factor Load Diversity Factor	
% V kV Angle Service Initial 100 6.6 0 Out State As-built Operating 0 0 0 0 0 State As-built Equipment	
Operating 0 0 0 State As-built Equipment Connection 3 Phase 3 Phase 1 Phase 2W 1 Phase 3W 1	
Equipment Tag # Name Description Classification Connection Connection Onnection Onnect	~
Tag # 	
Name 1 Phase 2W Description 1 Phase 3W Classification Load Diversity Factor	
Description 1 Phase 3W Classification Load Diversity Factor	_
Classification Load Diversity Factor	
Zone 1 🖨 Min. Max.	
Area 1 🚔 80 % 125	%
Region 1 🜩	

Gambar 3.6 Tampilan Bus Editor.

[Sumber: Software ETAP 12.6]

3.11.3 Pengisian data transformator

Data untuk transformator dapat dimasukan ke dalam *Transformer Editor*. Data yang harus dimasukan ke dalam editor ini diantaranya: rating kV primer dan sekunder, rating kapasitas daya, *grounding*, setting *tap changer* dan lain-lain. Gambar 3.7 merupakan contoh tampilan dari *Transformer Editor* untuk tranformator 2-*Winding*.

	R	ated k	v	33		●B	alanced	C) Unbalar	iced			
	Gen. Cat.	%V	Vangle	MW	Mvar	%PF	Qmax	Qmin				1	
1	Desian	100	0									1	
2	Normal	100	0										
3	Shutdown	100	0										
4	Emergency	100	0										
5	Standby	100											
7	Accident	100											
8	SummerLoad	100	0										
9	Winter Load	100	ŏ										
10	Gen Cat 10	100	Ō						1				
Op	perating		% V 100		/angle 0		MW 19.103	1	Mvar 1.591				

Gambar 3.7 Tampilan 2-Winding Transformer Editor. [Sumber: Software ETAP 12.6]

3.11.4 Pengisian data motor induksi

Data untuk motor induksi dapat dimasukan ke dalam *Induction Machine Editor*. Data yang harus dimasukan ke dalam editor ini diantaranya: rating kV, rating kapasitas daya, faktor daya, effisiensi, RPM *grounding*, setting beban, metode *starting* dan lain-lain. Gambar 3.8 merupakan tampilan dari *Induction Machine Editor*.

Gambar 3.8 Tampilan *Induction Machine Editor*. [Sumber: Software ETAP 12.6]

3.11.5 Pengisian data *lumped load*

Data untuk *lumped load* dapat dimasukan ke dalam *Lumped Load Editor*. Data yang harus dimasukan ke dalam editor ini diantaranya: rating kV, rating kapasitas daya, faktor daya, data *short circuit, grounding*, dan lain-lain. Gambar 3.9 merupakan tampilan dari *Lumped Load Editor*.

Gambar 3.9 Tampilan Lumped Load Editor.

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

[Sumber: Software ETAP 12.6]

3.11.6 Pengisian data kabel

Data untuk kabel dapat dimasukan ke dalam *Cable Editor*. Data yang harus dimasukan ke dalam editor ini diantaranya: rating kV, jenis kabel, luas penampang kabel, panjang kabel, impedansi kabel, dan lain-lain. Gambar 3.10 merupakan tampilan dari *Cable Editor*

		Ca	ble Editor -	Cabl	e3		
Sizing - Info	Phase 9 Physical	Sizing - GND/PE Impedance	Reliability Configuration	 1	Routing Loading	Remarks Capacity	Comment Protection
C: XI	aled BS6622 .PE	Non-Mag. 100 %	50 Hz 6.6 kV	1/C	Coc AL 240	le : 240	mm ²
Info ID From To	Cable3 ESB A RAW MILL (INC	OMING)	 ✓ 6.6 kV ✓ 6.6 kV 		Revisio	n Data Base	*
Equipme	nt Tag#]	- Conditio Ser S	on vice Out State As-built	~
Desci	ription				No. of C	onductors / Phase	•
Length	Length 180	m v	ry Library		Connec	tion hase hase	

Gambar 3.10 Tampilan Cable Editor.

[Sumber: Software ETAP 12.6]

3.12 Metode Simulasi Starting Motor

Setelah single line telah dibuat dan data-data spesifikasi komponen telah dimasukan, maka langkah selanjutnya adalah melakukan simulasi *motor starting*. Ada hal-hal yang perlu diperhatikan sebelum melakukan simulasi *starting motor*, yaitu, pastikan single line diagram dibuat dengan benar sehingga tidak ada *loop* dalam sirkuit dan tidak ada *infinite* bus. Adanya *loop* tersebut dapat menyebabkan ketidaksempurnaan dalam perhitungan *load flow*, dan hasil perhitungannya tidak akan konvergen yang akan menyebabkan nilai perhitungan *motor starting* menjadi tidak akurat. Kemudian data yang dimasukan ke dalam komponen-komponen juga

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

harus benar, jika tidak, maka hasil perhitungan dalam simulasi pun tidak akan akurat. Dalam simulasi *starting motor*, digunakan mode *Motor Acceleration Analysis*.

Gambar 3.11 Modul *Motor Acceleration Analysis*.

[Sumber: Software ETAP 12.6]

3.12.1 Motor starting study case

Menu ini digunakan untuk merencanakan dan mengedit simulasi yang akan dijalankan. Dalam menu ini, terdapat sub-menu utama yang harus kita isi. Submenu info, di dalamnya terdapat parameter solusi metode numerik yang dipakai, misalkan dengan *metode Newton-Raphson atau Adaptive Newton Raphson*. Kemudian Jumlah iterasi maksimal juga harus ditentukan.

Di sub-menu *event*, kita bisa menentukan jumlah *event* simulasi dan kapan masing-masing waktu simulasi tersebut dilakukan. Selain itu, dalam setiap *event*, kita harus menambahkan element yang akan digunakan, contohnya men*start* atau mematikan motor tertentu, menyalakan atau mematikan beban statis tertentu, atau mengubah kategori operasi dari sebuah generator. Setelah itu semua data diisi, masukan total waktu simulasi yang diinginkan.

Di menu ini juga terdapat pilihan untuk menggunakan *Load Tap Changer* dan AVR yang terdapat di sub-menu model.

Event	s		Action by I	Element				
Eve * 1 * 2	nt ID	Time 0.000 2.000	Action Start Start	Load ID K361-MD1 K561-MD2	St Category -Mormal -Mormal	Rating 5000 kW 4800 kW	kV 6.6 kV 6.6 kV	Bus ID K361-MD K561-MD
			Action by \$	Ac	ld Edi	t	Delete]
Ad	d E	dit Delete	Action	Sta	rting Categories	Bus ID		Add Edit Delete
Total	Simulatio	on Time Second	Action by L	.oad Transit tive	ioning			

Gambar 3.12 *Motor Starting Study Case* sub-menu *Event* [Sumber: Software ETAP 12.6]

3.12.2 Toolbar motor starting

Setelah rencana *starting* motor telah dibuat dan data-datanya telah dimasukan ke dalam menu *Motor Starting Study Case*, maka langkah selanjutnya adalah melakukan simulasi *motor starting* dengan mengklik ikon *run static motor starting* untuk menjlankan simulasi *starting* motor statis dan mengklik ikon *run dynamic motor starting* untuk menjalankan simulasi *starting* motor dinamis. Apabila simulasi berjalan dengan baik, maka akan muncul jendela *Motor Starting Analysis Alert View* yang akan memberitahukan kondisi yang terjadi pada bus-bus dan beban-beban sistem pada saat dijalankannya *starting motor*. Kemudian akan muncul pula tampilan *Motor Starting Time-Slider* yang digunakan untuk mengetahui arus *inrush* yang masuk ke bus motor seiring perubahan waktu. Tabel 3.6 menunjukan fungsi dari menu-menu utama yang ada pada *toolbar motor starting*.

Tabel 3.6 Fungsi Toolbar Motor Starting

Menu	Nama	Fungsi

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

	Run Dynamic Motor Starting	Menjalankan simulasi <i>starting</i> motor dinamis.				
Menu	Nama	Fungsi				
-4-0	Run Dynamic Motor Starting	Menjalankan simulasi <i>starting</i> motor statis.				
	Display Option	Menentukan tampilan layar.				
4	Alert View	Menampilkan jendela Motor Starting Analysis Alert View.				
	Report Manager	Menampilkan lapora hasil simulasi.				
	Motor Starting Plots	Menampilkan plot hasil simulasi.				
8	Halt Current Calculation	Menghentikan perhitungan simulasi yang sedang berjalan.				

[Sumber: Software ETAP 12.6]

Kemudian untuk menampilkan grafik plot dari simulasi klik menu *Motor Starting Plots* dan pilih plot apa saja yang ingin ditampilkan, misalnya tegangan di bus motor, arus yang mengalir pada motor dan lain-lain. Dan untuk menampilkan hasil laporan simulasi, klik menu *Report Manager*, tentukan hasil apa saja yang akan ditampilkan, seperti laporan *load flow*, akselerasi dan lain-lain. Serta tentukan format file dari laporan tersebut.

3.13 Metode Simulasi Pelepasan Beban

Selanjutnya, untuk mengetahui efek dari pelepasan beban terhadap munculnya voltage swell, penulis akan melakukan simulasi pelepasan beban dengan menggunakan mode *Transient Stability Analysis*. Mode ini digunakann

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

untuk mengetahui kemampuan sistem untuk bekerja kembali secara normal setelah terjadinya suatu gangguan. Mode *Transient Stability Analysis* dirancang untuk menyelidiki tanggapan dan batas stabilitas sistem tenaga sebelum, selama, dan setelah perubahan sistem atau gangguan. Seperti halnya simulasi *starting* motor. Ada hal-hal yang perlu diperhatikan sebelum melakukan simulasi pelepasan beban, yaitu, pastikan single line diagram dibuat dengan benar sehingga tidak ada *loop* dalam sirkuit dan tidak ada *infinite* bus. Hal tersebut tersebut dapat menyebabkan ketidaksempurnaan dalam perhitungan *load flow*, dan hasil perhitungannya tidak akan konvergen yang akan menyebabkan nilai perhitungan pada saat pelepasan beban menjadi tidak akurat. Kemudian data yang dimasukan ke dalam komponen-komponen juga harus benar, jika tidak, maka hasil perhitungan dalam simulasi pun tidak akan akurat.

Gambar 3.13 Modul *Transient Stability Analysis*.

[Sumber: Software ETAP 12.6]

3.13.1 Transient stability study case

Menu ini digunakan untuk merencanakan dan mengedit simulasi yang akan dijalankan. Dalam menu ini, terdapat sub-menu utama yang harus kita isi. Submenu info, di dalamnya terdapat parameter solusi metode numerik yang dipakai, misalkan dengan *metode Newton-Raphson, Accelerated Gauss-Seidel atau Adaptive Newton Raphson.* Kemudian Jumlah iterasi maksimal juga harus ditentukan.

Di sub-menu *event*, kita bisa menentukan jumlah *event* simulasi dan kapan masing-masing waktu simulasi tersebut dilakukan. Selain itu, dalam setiap *event*, kita harus menambahkan element yang akan digunakan, contohnya melepaskan motor tertentu, memunculkan gangguan 3 phasa pada bus, memunculkan gangguan tanah, dan lain-lain. Setelah itu, masukan juga total waktu simulasi

Rizky Nursani, 2017

ANALISI VOLTAGE SAG AND SWELL AKIBAT PENGOPERASIAN MOTOR KAPASITAS BESAR PADA SISTEM KELISTRIKAN PABRIK SEMEN

yang diinginkan. Pada sub-menu *Plot*, kita bisa memilih tampilan plot apa saja yang ingin dimunculkan pada saat simulasi telah selesai dilakukan.

			1	ran	sient Stabil	ity Study C	lase		
nfo	Events	Plot	Dyn Model	Adj	ustment				
E	vents				Actions				
					For E	Event	1	Active	
1	EventID		Time		Device Type	Device ID	Action	Settin	Settin
	*1		0.000		Induction Moto	or K361-MD1-N	101 Delete		
	Add	Edit	Delete			Add	Edit	Delete	
S	olution Pa	rameters	3						
		Total Sir	nulation Time		20 Seco	nd			
	Sim	ulation 1	lime Step (dt		0.001	Plot	Time Step	20 x (dt
<	TS			~	/ >	Help		ОК	Cancel

Gambar 3.14 Tampilan Transient Stability Study Case sub-menu Events.

[Sumber: Software ETAP 12.6]

3.13.2 Toolbar transient stability study analysis

Setelah rencana pelepasan beban telah dibuat dan data-datanya telah dimasukan ke dalam menu *Transient Stability Study Case*, maka langkah selanjutnya adalah melakukan simulasi pelepasan beban dengan mengklik ikon *run static motor starting* untuk menjlankan simulasi *starting* motor statis dan mengklik ikon *run transient stability* untuk menjalankan simulasi pelepasan beban. Apabila simulasi berjalan dengan baik, maka akan muncul jendela *Transient Stability Time-Slider* yang digunakan untuk mengetahui apa yang terjadi pada bus-bus yang mengalirkan daya ke beban-beban yang dilepaskan. Tabel 3.7 menunjukan fungsi dari menu-menu utama yang ada pada *toolbar Transient Stability Analysis*.

Rizky Nursani, 2017

Menu	Nama	Fungsi
A.	Run Transient Stability	Menjalankan simulasi <i>Transient</i> Stability
Menu	Nama	Fungsi
	Display Option	Menentukan tampilan layar.
4	Alert View	Menampilkan jendela Transient Stability Analysis Alert View.
	Report Manager	Menampilkan laporan hasil simulasi.
Q	Action List	Menampilkan jendela Transient Stability Time-Slider
	Transient Stability Plots	Menampilkan plot hasil simulasi.
	Halt Current Calculation	Menghentikan perhitungan simulasi yang sedang berjalan.

Tabel 3.7 Fungsi Toolbar Transient Stability Study Analysis

[Sumber: Software ETAP 12.6]

Kemudian untuk menampilkan grafik plot dari simulasi klik menu *Transient Stability Plots* dan pilih plot apa saja yang ingin ditampilkan, misalnya tegangan di bus, arus yang mengalir pada bus dan lain-lain. Dan untuk menampilkan hasil laporan simulasi, klik menu *Report Manager*, tentukan hasil apa saja yang akan ditampilkan, seperti laporan *load flow*, laporan *dynamic stability* dan lain-lain. Serta tentukan format file dari laporan tersebut.

Rizky Nursani, 2017