IMPLEMENTASI ALGORITMA EXTREME LEARNING MACHINE PADA PREDIKSI AKTIVITAS BADAI GEOMAGNETIK

Prawira, Irsyad Riandri Dana (2017) IMPLEMENTASI ALGORITMA EXTREME LEARNING MACHINE PADA PREDIKSI AKTIVITAS BADAI GEOMAGNETIK. S1 thesis, Universitas Pendidikan Indonesia.

[img] Text
S_KOM_1307332_Title.pdf

Download (297kB)
[img] Text
S_KOM_1307332_Table_of_content.pdf

Download (445kB)
[img] Text
S_KOM_1307332_Abstract.pdf

Download (380kB)
[img] Text
S_KOM_1307332_Chapter 1.doc.pdf

Download (317kB)
[img] Text
S_KOM_1307332_Chapter 2.pdf
Restricted to Staf Perpustakaan

Download (1MB)
[img] Text
S_KOM_1307332_Chapter 3.pdf

Download (741kB)
[img] Text
S_KOM_1307332_Chapter 4.pdf
Restricted to Staf Perpustakaan

Download (1MB)
[img] Text
S_KOM_1307332_Chapter 5.pdf

Download (289kB)
[img] Text
S_KOM_1307332_Bibliography.pdf

Download (455kB)
[img] Text
S_KOM_1307332_Appendix.pdf
Restricted to Staf Perpustakaan

Download (9MB)

Abstract

Badai geomagnetik merupakan gangguan yang terjadi di magnetosfer bumi, akibat adanya aktivitas dari matahari. Dalam rangka peringatan dini, Lembaga Penerbangan dan Antariksa Nasional (LAPAN) di Indonesia memiliki kegiatan rutin untuk memprediksi kemungkinan terjadinya badai tersebut dalam rentang waktu 24 jam ke depan. Namun pada tahun 2015, hasil prediksi badai geomagnetik yang dilakukan secara manual oleh LAPAN hanya mendapatkan akurasi sebesar 57,14%. Oleh karena itu, penelitian ini mengusulkan pemanfaatan metode Extreme Learning Machine (ELM) dalam melakukan prediksi badai geomagnetik, dengan tujuan untuk mendapatkan akurasi yang lebih baik. Data penelitian yang digunakan meliputi data coronal hole, coronal mass ejection, solar wind dan indeks Dst pada tahun 2011 hingga 2016. Hasil penelitian ini menunjukkan bahwa algoritma ELM memiliki tingkat akurasi yang lebih besar dalam memprediksi badai geomagnetik tahun 2015, dengan perolehan nilai 57,80822%. Meskipun memiliki selisih akurasi yang kecil, namun pemanfaatan ELM ini dapat membantu prediksi badai geomagnetik secara otomatis. Secara umum, algoritma ELM yang dibangun dalam penelitian ini memiliki nilai rata-rata akurasi prediksi tertinggi sebesar 69,9055%.---------- The geomagnetic storm is a disturbance that occurs in the earth’s magnetosphere, as the result of the activity of the sun. In case for early warning, National Institute of Aeronautics and Space Agency (LAPAN) in Indonesia has a routine activity to predict the probability of geomagnetic storm appearance for the next 24 hours. But in 2015, the geomagnetic storm prediction results are done manually just managed to get the accuracy of 57.14%. Therefore, this research proposes the utilization method of Extreme Learning Machine (ELM) for geomagnetic storm prediction, in order to get better accuracy. Research data that used include data on coronal holes, coronal mass ejection, solar wind and the Dst index from 2011 to 2016. The results of this research show that the ELM algorithm has a greater accuracy in prediction the 2015 geomagnetic storm activity, with the acquisition of 57.80822% value. Despite the difference in accuracy is small, but the utilization of ELM can help predicting geomagnetic storm automatically. In general, the ELM algorithm built in this research have the average value of the highest prediction accuracy of 69.9055%.

Item Type: Skripsi,Tesis,Disertasi (S1)
Additional Information: No. Panggil : S KOM PRA i-2018; Pembimbing : I. Rani Megasari, II. Eki Nugraha; NIM : 1307332
Uncontrolled Keywords: Prediksi, Machine Learning, Klasifikasi, Extreme Learning Machine, Badai Geomagnetik, Indeks Dst, Prediction, Classification, Geomagnetic Storm, Dst Index
Subjects: L Education > L Education (General)
Q Science > QC Physics
Q Science > QE Geology
Divisions: Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Pendidikan Ilmu Komputer
Depositing User: DAM staf
Date Deposited: 26 Sep 2018 02:45
Last Modified: 26 Sep 2018 02:45
URI: http://repository.upi.edu/id/eprint/31684

Actions (login required)

View Item View Item