LAMPIRAN 7

HASIL ANALISIS KEBENARAN KONSEP PADA OBJEK PENELITIAN

Keterangan kriteria kebenaran konsep

Benar (B) : Jika penjelasan konsep subjek penelitian *sesuai* dengan penjelasan konsep standar

Salah (S) : Jika penjelasan konsep subjek penelitian tidak *sesuai* dengan penjelasan konsep standar

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep			naran nsep
		Standar	Subjek Penelitian	В	S
3.14.1. Menyebutkan	Larutan Jenuh	Jika suatu larutan mengandung sejumlah zat	Jika sejumlah garam dapur dilarutkan ke dalam air		$\sqrt{}$
pengertian larutan		terlarut sebanyak yang dapat dilarutkannya pada	dan ada sebagian yang tidak dapat larut lagi,		
jenuh		suhu tertentu, maka larutan tersebut adalah larutan	larutan tersebut merupakan larutan jenuh (Gambar		
		jenuh dan kelebihan zat terlarut yang ditambahkan	8.1). Jika ke dalam larutan jenuh NaCl tersebut		
		mengendap di bagian bawah larutan.	ditambahkan lagi NaCl, NaCl yang ditambahkan		
		(Brady, dkk., 2012, hlm. 156)	akan mengendap sebagai padatan NaCl. Dengan		
			demikian, konsentrasi larutan sama dengan		
			kelarutan NaCl dalam air.		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
muikator rembelajaran	Euser Ronsep	Standar	Subjek Penelitian	В	S
			Gambar 8.1 Penambahan Kristal NaCl ke dalam larutan NaCl jenuh menyebabkan NaCl tambahan mengendap sebagai padatan NaCl (hlm. 288)		
3.14.4. Menyebutkan pengertian kelarutan	Kelarutan	Kelarutan diartikan sebagai massa zat terlarut yang membentuk suatu larutan jenuh dengan sejumlah pelarut pada suhu tertentu. Suhu tersebut harus spesifik karena kelarutan berubah seiring perubahan suhu. (Brady, dkk., 2012 hlm. 156; hlm. 593) Terdapat dua kuantitas yang menyatakan kelarutan suatu zat: kelarutan molar, yaitu jumlah mol zat terlarut dalam 1 L larutan jenuh (mol per liter), dan kelarutan, yaitu jumlah gram zat terlarut dalam 1 L	Kelarutan (solubility) suatu zat di dalam suatu pelarut menyatakan jumlah maksimum suatu zat yang dapat larut di dalam suatu pelarut. (hlm. 287-288) Satuan kelarutan umumnya dinyatakan dalam gram/L atau mol/L. (hlm. 287-288)		V

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
indikator i embelajaran	Zuser Honsep	Standar	Subjek Penelitian	В	S
		larutan jenuh (gram per liter). (Chang & Overby, 2011, hlm. 608)	Jumlah gula yang dapat larut dalam 1 liter air kurang lebih 1.800 gram. Dengan kata lain, kelarutan gula dalam air adalah 1.800 gram per liter air. (hlm. 287)		
3.14.5. Menjelaskan pengaruh suhu terhadap kelarutan	Pengaruh Suhu Terhadap Kelarutan	Dalam suatu larutan jenuh terdapat kesetimbangan dinamis antara zat terlarut yang tak larut dan zat terlarut yang larut dalam larutan, seperti yang terlihat pada persamaan di bawah. zat terlarut itidak larut ⇒ zat terlarut larut Selama suhu dipertahankan konstan, konsentrasi zat terlarut dalam larutan tetap. Tetapi, jika suhu campuran berubah, kesetimbangan ini akan berbalik dan lebih banyak zat terlarut akan larut atau akan mengendap. Untuk menganalisis bagaimana suhu mempengaruhi kelarutan, kita dapat menggunakan asas Le Chatelier. Kebanyakan padatan ionik larut dengan proses endotermik. Kelarutannya dalam air biasanya meningkat seiring peningkatan suhu. Untuk meningkatkan suhu suatu larutan, panas (energi) ditambahkan. Ketika zat terlarut larut dalam suatu zat pelarut, panas diserap atau	Kelarutan zat padat dalam air akan semakin tinggi jika suhunya dinaikkan. Hal ini disebabkan adanya kalor yang akan mengakibatkan semakin renggangnya jarak antarmolekul pada zat padat tersebut. Merenggangnya jarak antarmolekul pada molekul-molekul zat padat menjadikan kekuatan gaya antarmolekul menjadi lemah sehingga mudah terlepas oleh adanya pengaruh gaya tarik molekul-molekul air. Grafik pada Gambar 8.2 menunjukkan adanya pengaruh suhu terhadap kelarutan beberapa zat padat.		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
indikatoi i emberajaran	Label Konsep	Standar	Subjek Penelitian	В	S
		ditingkatkan.Berdasarkan asas Le Chatelier, ketika kita menambahkan energi panas untuk menaikkan suhu, sistem merespon dengan menggunakan sebagian energi yang kita tambahkan. Hal ini menyebabkan kesetimbangan begeser ke kanan. Dengan kata lain, lebih banyak zat terlarut yang larut ketika kesetimbangan berubah. Jadi, ketika proses pelarutan bersifat endotermis, peningkatan suhu akan menambah kelarutan zat terlarut. Ini adalah peristiwa yang biasa terjadi untuk padatan yang dilarutkan dalam zat pelarut cair.	Gambar 8.2 Pengaruh suhu terhadap kelarutan beberapa zat padat (hlm. 288-289)		

Indikator Pembelajaran Label Konsep	Penjelasan Konsep			naran nsep
Indikator remocajaran Edoer Romsep	Standar	Subjek Penelitian	В	S
	Gambar 17.6. Kelarutan beberapa zat adat sebagai suatu fungsi suhu. Beberapa padatan, seperti Na ₂ SO ₄ anhidrat, serta banyak cairan dan gas larut dengan proses eksotermik. Kelarutannya biasanya berkurang seiring peningkatan suhu. (Brady, dkk., 2012, hlm. 593-594; Whitten, dkk.,			

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
munutoi i emperajaran	Laber Ronsep	Standar	Subjek Penelitian	В	S
		Carbon motovide Nitrogen Helium 1.7 Kelarutan beberapa gas dalam air sebagai fungsi suhu pada tekanan tetap 1 atm gas di atas larutan. (Zumdahl & Zumdahl, 2010, hlm. 508)	Berbeda dengan zat padat, kenaikan suhu akan menyebabkan kelarutan gas dalam air berkurang. Hal ini disebabkan suhu yang meningkat mengakibatkan gas yang terlarut di dalam air akan terlepas meninggalkan air. (hlm. 289)		
3.14.6. Menjelaskan tetapan hasil kali kelarutan (K_{sp})	Tetapan Hasil Kali Kelarutan (K_{sp})	Kita akan mengasumsikan ketika suatu padatan ionik larut dalam air, zat padat tersebut terdisosiasi sempurna menjadi kation dan anion. Sebagai contoh, kalsium florida larut dalam air sebagai berikut: H_2O	Senyawa-senyawa ion yang terlarut di dalam air akan terurai menjadi partikel-partikel penyusunnya yang berupa ion positif dan ion negatif. Jika ke dalam larutan jenuh suatu senyawa ion ditambahkan padatan senyawa ion, padatan tersebut akan mengendap. Padatan yang tidak larut	V	

Indikator Pembelajaran	Label Konsep	Penjelasa	an Konsep		naran nsep
manator remociajaran	Laber Konsep	Standar	Subjek Penelitian	В	S
		$\operatorname{CaF_2(s)} o \operatorname{Ca}^{2+}(aq) + 2\operatorname{F}(aq)$ Ketika padatan garam tersebut pertama kali dimasukkan ke dalam air, tidak ada ion Ca^{2+} dan F yang muncul. Tetapi, selama proses pelarutan terjadi terus menerus, konsentrasi Ca^{2+} dan F bertambah, sehingga kemungkinan besar ion-ion tersebut akan bertabrakan dan membentuk kembali fase padatan. Dengan demikian kedua proses tersebut terjadi—reaksi pelarutan dan reaksi sebaliknya: $\operatorname{Ca}^{2+}(aq) + 2\operatorname{F}(aq) o \operatorname{CaF_2(s)}$ Akhirnya, kesetimbangan dinamis tercapai: $\operatorname{CaF_2(s)} \Longrightarrow \operatorname{Ca}^{2+}(aq) + 2\operatorname{F}(aq)$ Pada titik ini tidak ada lagi padatan yang larut (larutan dikatakan jenuh). (Zumdahl &Zumdahl, 2010, hlm. 744-745)	(endapan) ini tidak mengalami ionisasi. Jika ke dalam sistem tersebut ditambahkan air, padatan tersebut akan segera larut dan terionisasi. Sebaliknya, jika air dalam larutan tersebut diuapkan, ion-ion akan segera mengkristal. Dalam peristiwa ini terjadi sistem kesetimbangan antara zat padat dengan ion-ionnya di dalam larutan. Gambar 8.3 menunjukkan sejumlah AgCl dilarutkan ke dalam 100 mL air dan larut sebagian. AgCl yang melarut mengalami ionisasi: AgCl(s) → Ag ⁺ (aq) + Cl ⁻ (aq) sedangkan AgCl yang tidak larut tetap sebagai padatan AgCl yang mengendap. Jika air diuapkan, terjadi penggabungan ion Ag ⁺ dan ion Cl ⁻ menjadi padatan (endapan) AgCl: Ag ⁺ (aq) + Cl ⁻ (aq) → AgCl(s) Proses sebaliknya, jika ke dalam air tersebut ditambahkan air, endapan AgCl akan segera larut dan terionisasi: AgCl(s) → Ag ⁺ (aq) + Cl ⁻ (aq)		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenara Konsep	
Indikator Temberajaran	Label Konsep	Standar	Subjek Penelitian	В	S
			Gambar 8.3 Proses Pelarutan AgCl dalam air. (a) Pada saat dilarutkan, sebagian AgCl larut dan sebagian tetap mengendap, terjadi kesetimbangan : AgCl(s) Ag⁺(aq) + Cl⁻(aq). (b) Ke dalam larutan tersebut ditambahkan AgCl padat dan akan terus terjadi pengendapan. (c) Pada saat ditambah air, sebagian AgCl yang masih mengendap akan melarut dan terionisasi. (hlm. 289-290)		
		Seandainya kita menambahkan satu gram padatan barium sulfat, BaSO ₄ , ke dalam 1,0 liter air pada	Dengan demikian, di dalam larutan jenuh tersebut terdapat reaksi kesetimbangan:		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
Indikator i emberajaran	Label Konsep	Standar	Subjek Penelitian	В	S
		suhu 25°C dan mengaduk hingga larutan jenuh.	$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$		
		Sangat sedikit BaSO ₄ yang larut. BaSO ₄ yang telah	$K = \frac{[Ag^{+}][Cl^{-}]}{[AgCl]}$		
		larut terdisosiasi sempurna menjadi ion-ion	$K = \frac{\text{[AgCl]}}{\text{[AgCl]}}$		
		penyusunnya.			
		H ₂ O	Oleh karena konsentrasi zat padat selalu tetap,		
		$BaSO_4(s) \stackrel{\text{H}_2O}{\longleftarrow} Ba^{2+}(aq) + SO_4^{2-}(aq)$	K[AgCl] akan menghasilkan nilai tetap, sehingga:		
		(Kita biasanya menghilangkan H ₂ O di atas tanda	$K[AgCl] = [Ag^+] [Cl^-]$		
		panah seperti persamaan sebelumnya)			
		Dalam kesetimbangan senyawa yang sedikit larut	Untuk larutan jenuh AgCl, konsentrasi ion Ag ⁺ dan		
		dalam air, tetapan kesetimbangan tersebut disebut	Cl mempunyai nilai yang setara dengan nilai		
		tetapan hasil kali kelarutan, K_{sp} . Aktivitas padatan	kelarutan AgCl dalam air sehingga nilai K pada		
		BaSO ₄ adalah satu. Oleh sebab itu, konsentrasi	kesetimbangan kelarutan disebut sebagai tetapan		
		padatan tidak dimasukkan dalam persamaan	hasil kali kelarutan ($K_{\rm sp}$).		
		tetapan kesetimbangan. Untuk larutan BaSO ₄ jenuh	$K_{\rm sp}$ [AgCl] = [Ag ⁺] [Cl ⁻]		
		dalam hubungannya dengan padatan BaSO ₄ dapat			
		dituliskan:			
		$BaSO_4(s) \Longrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$	Pada larutan jenuh senyawa ion A_mB_n di dalam air		
		dan $K_{sp} = [Ba^{2+}] [SO_4^{2-}]$	akan menghasilkan reaksi kesetimbangan:		
		- <u>-</u>	$A_m B_n(s) = mA^{n+}(aq) + nB^{m-}(aq)$ Nilai kasil kalamtannya dinyatakan dangan		
		Tetapan hasil kali kelarutan untuk BaSO ₄ adalah	Nilai hasil kali kelarutannya dinyatakan dengan		
		hasil kali konsentrasi ion-ion penyusunnya dalam	rumus: $V \wedge D = [A^{n+1}]^m [D^{m-1}]^n$		
		suatu larutan jenuh.	$K_{\operatorname{sp}} A_m \mathbf{B}_n = \left[\mathbf{A}^{n+}\right]^m \left[\mathbf{B}^{m-}\right]^n$		
		Umumnya, ekspresi hasil kali kelarutan untuk	Nilai tetapan hasil kali kelarutan ($K_{ m sp}$) suatu zat		
		suatu senyawa adalah hasil kali konsentrasi ion-ion	selalu tetap pada suhu tetap. Jika suhunya berubah,		

Indikator Pembelajaran	Label Konsep	Penjelasa	an Konsep		naran nsep
manutor i emociajaran	Laber Ronsep	Standar	Subjek Penelitian	В	S
		penyusunnya dipangkatkan koefisiennya yang sama dengan jumlah ion dalam suatu rumus senyawa. Nilainya tetap pada suhu yang tetap untuk suatu larutan jenuh dari suatu senyawa. Ini adalah asas hasil kali kelarutan.	nilai $K_{\rm sp}$ juga akan mengalami perubahan. (hlm.289- 291)		
		Secara umum, kita dapat melambangkan pelarutan suatu senyawa yang sukar larut dan K_{sp} -nya sebagai $M_yX_z(s) \rightleftharpoons yM^{z+}(aq) + zX^{y-}(aq)$ dan $K_{sp} = [M^{z+}]^y [X^{y-}]^z$			
		Kita sering meringkas istilah "tetapan hasil kali kelarutan" menjadi "hasil kali kelarutan". (Whitten, dkk., 2004, hlm. 823-825)			
		• MgF_2 $MgF_2(s) \rightleftharpoons Mg^{2+}(aq) + 2F^{-}(aq)$ $K_{sp} = [Mg^{2+}] [F^{-}]^2$ • Ag_2CO_3 $Ag_2CO_3(s) \rightleftharpoons 2Ag^{+}(aq) + CO_3^{2-}(aq)$ $K_{sp} = [Ag^{+}]^2 [CO_3^{2-}]$ • $Ca_3(PO_4)_2$ $Ca_3(PO_4)_2(s) \rightleftharpoons 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$ $K_{sp} = [Ca^{2+}]^3 [PO_4^{3-}]^2$	Contoh 1. Untuk senyawa ion sukar larut Ag ₂ CrO ₄ dengan reaksi kesetimbangan: Ag ₂ CrO ₄ (s) 2Ag ⁺ (aq) + CrO ₄ ²⁻ (aq) K _{sp} Ag ₂ CrO ₄ = [Ag ⁺] ² [CrO ₄ ²⁻] 2. Untuk senyawa ion sukar larut Ca ₃ (PO ₄) ₂ dengan reaksi kesetimbangan: Ca ₃ (PO ₄) ₂ (s) 3Ca ²⁺ (aq) + 2PO ₄ ³⁻ (aq) K _{sp} Ca ₃ (PO ₄) ₂ = [Ca ²⁺] ³ [PO ₄ ³⁻] ²		

Indil	Indikator Pembelajaran Lai		Penjelasa	n Konsep		naran nsep
	mamutor remociajaran		Standar	Subjek Penelitian	В	S
3.14.7.	Menjelaskan hubungan tetapan hasil kali kelarutan (K_{sp}) dengan kelarutan	Hubungan Tetapan Hasil Kali Kelarutan (K_{sp}) dengan Kelarutan	(Chang & Overby, 2011, hlm. 606) Nilai K_{sp} suatu garam memberikan kita informasi tentang kelarutannya. (Zumdahl & Zumdahl, 2010, hlm. 749-750) Kita harus teliti menggunakan nilai K_{sp} untuk memprediksi kelarutan relatif dari suatu kelompok garam. Terdapat dua kemungkinan:	(hlm. 290) Nilai hasil kali kelarutan (K_{sp}) suatu senyawa ionik yang sukar larut dapat memberikan informasi tentang kelarutan senyawa tersebut dalam air. (hlm. 293) Semakin besar nilai K_{sp} suatu zat, semakin mudah larut senyawa tersebut.		√ V
			1. Garam-garam yang menghasilkan jumlah ion yang sama. Sebagai contoh, perhatikan $AgI(s) \qquad K_{sp} = 1.5 \times 10^{-16}$ $CuI(s) \qquad K_{sp} = 5.0 \times 10^{-12}$ $CaSO_4(s) \qquad K_{sp} = 6.1 \times 10^{-5}$ Masing-masing padatan tersebut larut dan menghasilkan dua ion. $Garam \rightleftharpoons kation + anion$ $K_{sp} = [kation][anion]$ Jika x adalah kelarutan dalam mol/L, maka pada kesetimbangan $[kation] = x$ $[anion] = x$ $[anion] = x$ $K_{sp} = [kation][anion] = x^2$	Hubungan Kelarutan dengan K_{sp} Seperti telah dituliskan sebelumnya bahwa konsentrasi larutan jenuh senyawa ion A_mB_n sama dengan nilai kelarutan A_mB_n dalam satuan mol/liter. Senyawa A_mB_n yang terlarut akan mengalami ionisasi dalam sistem kesetimbangan: $A_mB_n(s) \rightleftharpoons mA^{n+}(aq) + nB^{m-}(aq)$ Jika nilai kelarutan dari senyawa A_mB_n sebesar s mol/L, di dalam reaksi kesetimbangan tersebut konsentrasi ion-ion A^{n+} dan B^{m-} adalah: $A_mB_n(s) \rightleftharpoons mA^{n+}(aq) + nB^{m-}(aq)$ s mol/L m s mol/L n s mol/L sehingga tetapan hasil kali kelarutan A_mB_n adalah:		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
manuta i emociajaran	Zuser Honsep	Standar	Subjek Penelitian	В	S
		$x = \sqrt{Ksp} = \text{kelarutan}$ Oleh sebab itu, pada kasus ini kita dapat membandingkan kelarutan padatan-padatan tersebut dengan membandingkan nilai K_{sp} -nya: CaSO ₄ (s) > CuI(s) > AgI(s) Most soluble; largest K_{sp} Least soluble; smallest K_{sp} Jadi, zat terlarut dengan nilai K_{sp} terbesar	$K_{\rm sp} A_m B_n = [A^{n+}]^m [B^{m-}]^n$ $= (m s)^m (n s)^n$ $= m^m x n^n (s)^{m+n}$ Jadi, untuk reaksi kesetimbangan: $A_m B_n(s) \rightleftharpoons mA^{n+}(aq) + nB^{m-}(aq)$ $K_{\rm sp} A_m B_n = m^m x n^n (s)^{(m+n)}$ dengan: $s = \text{kelarutan } A_m B_n \text{ dalam satuan mol/L}.$		
		memiliki kelarutan molar terbesar.	Berdasarkan rumus tersebut dapat ditentukan nilai kelarutannya sebagai berikut.		
		2. Garam-garam yang menghasilkan jumlah ion yang berbeda. Sebagai contoh, perhatikan $ \text{CuS}(s) \qquad K_{\text{sp}} = 8.5 \times 10^{-45} $ $ \text{Ag}_2 \text{S}(s) \qquad K_{\text{sp}} = 1.6 \times 10^{-49} $ $ \text{Bi}_2 \text{S}_3(s) \qquad K_{\text{sp}} = 1.1 \times 10^{-73} $	$S = m + n \frac{K_{sp}}{m^m \times n^n}$ (hlm. 293; hlm. 291)		
		Karena garam-garam tersebut menghasilkan jumlah ion yang berbeda ketika larut, nilai $K_{\rm sp}$ tidak dapat dibandingkan secara langsung untuk menentukan kelarutan relatif. Jika zat terlarut yang dibandingkan tidak sejenis, kamu harus menghitung masing-masing kelarutan molar dan membandingkan hasilnya.			
		Tabel 16.2. Kelarutan CuS, Ag ₂ S, dan Bi ₂ S ₃			

Indik	kator Pembelajaran	Label Konsep	Penjelasan Konsep			enaran nsep
	ator remocajaran	Euser Honsep	Standar	Subjek Penelitian	В	S
			pada 25°C			
			Calculated Salt K _{sp} Solubility (mol/L)			
			$\begin{array}{lllll} CuS & 8.5 \times 10^{-46} & 9.2 \times 10^{-23} \\ Ag_2S & 1.6 \times 10^{-40} & 3.4 \times 10^{-17} \\ Bi_2S_3 & 1.1 \times 10^{-73} & 1.0 \times 10^{-18} \end{array}$			
			Jika kita menghitung kelarutannya, kita mendapatkan hasil yang dirangkum dalam			
			tabel 16.2. Urutan kelarutannya adalah $\mathrm{Bi}_2\mathrm{S}_3(s) > \mathrm{Ag}_2\mathrm{S}(s) > \mathrm{CuS}(s)$ Most soluble Least soluble			
			yang merupakan kebalikan dari urutan nilai			
			K _{sp} -nya.			
2.14.0	M 12 21 2	D 11	(Petrucci, dkk., 2010, hlm. 788)		1	
3.14.8.	Menghitung nilai	Perhitungan	Kelarutan Molar dari Nilai K _{sp}	2. Pada suhu tertentu, nilai K_{sp} Ca(OH) ₂ = 4 x	\checkmark	
	kelarutan suatu zat berdasarkan data	Kelarutan Zat berdasarkan Data	Ketika hasil kali kelarutan untuk suatu senyawa diketahui, kelarutan senyawa tersebut dalam H ₂ O	10 ⁻¹² . Hitunglah kelarutan Ca(OH) ₂ dalam		
	tetapan hasil kali	Tetapan Hasil Kali	pada 25°C dapat dihitung.	air pada suhu tersebut. Jawab:		
	kelarutan (K_{sp})	Kelarutan ($K_{\rm sp}$)	pada 25 C dapat dilittung.	$K_{\rm sp} \text{Ca(OH)}_2 = 4 \times 10^{-12}$		
	Kerarutan (K _{sp})	Kelaratan (K _{sp})	Contoh	Reaksi kesetimbangan kelarutan:		
			Hitung kelarutan molar, konsentrasi ion-ion	Ca(OH) ₂ (s) \rightleftharpoons Ca ²⁺ (aq) + 2OH (aq)		
			penyusunnya, dan kelarutan dalam gram per liter	Nilai $m = 1$ dan $n = 2$, maka:		
			untuk (a) perak klorida, AgCl ($K_{\rm sp} = 1.8 \times 10^{-10}$),			
			dan (b) seng hidroksida, $Zn(OH)_2$ ($K_{sp} = 4.5 \times 10^{-17}$).	$S = \sqrt[3]{\frac{Ksp}{4}}$		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep			naran nsep
Zamator i emocagaran		Standar	Subjek Penelitian	В	S
		Perencanaan Kita diberikan nilai masing-masing tetapan hasil kali kelarutannya. Dalam masing-masing kasus kita tulis persamaan yang tepat, gambar konsentrasi pada kesetimbangan, dan subtitusi ke dalam ekspresi $K_{\rm sp}$. Penyelesaian (a) Persamaan untuk pelarutan perak klorida dan ekspresi hasil kali kelarutannya adalah $AgCl(s) \Longrightarrow Ag^+(aq) + Cl^-(aq)$ $K_{\rm sp} = [Ag^+][Cl^-] = 1.8 \times 10^{-10}$ Masing-masing AgCl yang larut menghasilkan satu Ag ⁺ and satu Cl ⁻ . Kita asumsikan $x = \text{mol/L}$ AgCl yang larut, yaitu, kelarutan molarnya. $AgCl(s) \Longrightarrow Ag^+(aq) + Cl^-(aq)$ $x \text{mol/L} \Longrightarrow x M$ Pensubtitusian ke dalam ekspresi hasil kali kelarutan memberikan $K_{\rm sp} = [Ag^+][Cl^-] = (x)(x) = 1.8 \times 10^{-10}$	$s = \sqrt[3]{\frac{4 \times 10^{-12}}{4}}$ $s = 10^{-4} \text{mol/L}$ Cara lain: Dimisalkan kelarutan Ca(OH) ₂ = s mol/L maka: $Ca(OH)_{2}(s) \rightleftharpoons Ca^{2+}(aq) + 2OH(aq)$ s mol/L s a solution s = s a sol		

Indikator Pembelajaran	Label Konsep	Penjelasa	Penjelasan Konsep		naran nsep
munutor remociujurum	Label Ronsep	Standar	Subjek Penelitian	В	S
		$x^2 = 1.8 \times 10^{-10}$ $x = 1.3 \times 10^{-5}$ $x = \text{kelarutan molar AgCl} = 1,3 \times 10^{-5} \text{ mol/L}$ Satu liter AgCl jenuh mengandung $1,3 \times 10^{-5}$ mol AgCl yang larut pada 25° C. Dari persamaan yang setara kita mengetahui konsentrasi ion-ion penyusunnya. $x = \text{kelarutan molar} = [\text{Ag}^+] = [\text{Cl}^-]$ $= 1,3 \times 10^{-5} \text{ mol/L} = 1,3 \times 10^{-5} \text{ M}$ Sekarang kita dapat menghitung massa AgCl yang larut dalam satu liter larutan jenuh. $\frac{2 \text{ g AgCl}}{\text{L}} = \frac{1.3 \times 10^{-5} \text{ mol AgCl}}{\text{L}} \times \frac{143 \text{ g AgCl}}{1 \text{ mol AgCl}}$ $= 1,9 \times 10^{-3} \text{ g AgCl/L}$ Satu liter larutan AgCl jenuh mengandung hanya 0,0019 g AgCl yang larut. (b) Persamaan untuk pelarutan seng hidroksida, Zn(OH) ₂ , dalam air dan ekspresi hasil kali kelarutannya adalah	$s = \sqrt[3]{\frac{3.2 \times 10^{-11}}{4}}$ $s = 2 \times 10^{-4} \text{ mol/L}$ Jadi, Mg(OH) ₂ yang dapat larut dalam 250 mL air adalah'' $= 2 \times 10^{-4} \times \frac{250 \text{ mL}}{1.000 \text{ mL}}$ $= 5 \times 10^{-5} \text{ mol}$ maka massa Mg(OH) ₂ yang terlarut adalah: $= 5 \times 10^{-5} \text{ mol } \times 58 \text{ g/mol}$ $= 0,0029 \text{ gram}$ (hlm. 292-293)		

Indikator Pembelajaran	Pembelajaran Label Konsep	Penjelasan Kons	ер	Kebenarai Konsep	
	Label Ronsep	Standar	Subjek Penelitian	В	S
		$Zn(OH)_2(s) \Longrightarrow Zn^{2+}(aq) + 2OH^-(aq)$			
		$K_{\rm sp} = [{\rm Zn^{2+}}][{\rm OH^{-}}]^2 = 4.5 \times 10^{-17}$			
		Kita asumsikan x = kelarutan molar, sehingga			
		$[Zn^{2+}] = x$ and $[OH^{-}] = 2x$, dan kita mempunyai			1
		$Zn(OH)_2(s) \implies Zn^{2+}(aq) + 2OH^{-}(aq)$			1
		$x \text{ mol/L} \implies x M \qquad 2x M$			
		Pensubtitusian ke persamaan hasil kali kelarutan memberikan			
		$[Zn^{2+}][OH^{-}]^{2} = (x)(2x)^{2} = 4.5 \times 10^{-17}$			
		$4x^3 = 4.5 \times 10^{-17}$ $x^3 = 11 \times 10^{-18}$ $x = 2.2 \times 10^{-6}$			İ
		$x = \text{kelarutan molar } Zn(OH)_2 = 2.2 \times 10^{-6} \text{ mol}$			1
		Zn(OH) ₂ /L			1
		$x = [Zn^{2+}] = 2.2 \times 10^{-6} M$			1
		dan			1
		$2x = [OH^{-}] = 4,4 \times 10^{-6} M$			
		Kita sekarang dapat menghitung massa Zn(OH) ₂			
		yang larut dalam satu liter larutan jenuh.			ĺ

Indikator Pembelajaran	Label Konsep	Penjelasa	nn Konsep		enaran nsep
Indiano I emociajaran	Zuber Honsep	Standar	Subjek Penelitian	В	S
		$\frac{\frac{2 \text{ g Zn(OH)}_2}{L}}{L} = \frac{2.2 \times 10^{-6} \text{ mol Zn(OH)}_2}{L} \times \frac{99 \text{ g Zn(OH)}_2}{1 \text{ mol Zn(OH)}}$ $= 2.2 \times 10^{-4} \text{ g Zn(OH)}_2/L$ Satu liter larutan Zn(OH) ₂ jenuh mengandung hanya 0,00022 g Zn(OH) ₂ yang larut. (Whitten, dkk., 20014, hlm. 828-829)			
3.14.9. Menjelaskan pengaruh ion senama terhadap kelarutan	Pengaruh Ion Senama terhadap Kelarutan	Pengaruh ion senama berlaku untuk kesetimbangan kelarutan seperti pada kesetimbangan ionik yang lain. Kelarutan suatu senyawa lebih kecil dalam larutan yang mengandung suatu ion yang senama dengan senyawa tersebut daripada kelarutannya dalam air murni (selama tidak ada reaksi lain yang disebabkan oleh keberadaan ion senama tersebut). Seandainya kita mengaduk timbal(II) klorida (suatu senyawa yang kelarutannya rendah) dengan air cukup lama untuk menghasilkan kesetimbangan berikut: PbCl ₂ (s) Pb ²⁺ (aq) + 2Cl (aq) Jika sekarang kita menambahkan suatu larutan pekat senyawa timbal yang mudah larut, seperti Pb(NO ₃) ₂ , penambahan konsentrasi Pb ²⁺ dalam larutan PbCl ₂ akan menggeser kesetimbangan ke	Jika ke dalam larutan jenuh AgCl ditambahkan beberapa tetes larutan NaCl, pengendapan AgCl akan terjadi. Demikian juga jika ke dalam larutan AgCl tersebut ditambahkan beberapa tetes larutan AgNO ₃ . 1) Larutan AgCl, semua AgCl terionisasi menjadi ion Ag ⁺ dan Cl ⁻ . 2) Penambahan larutan yang mengandung ion Cl ⁻ menyebabkan terjadinya endapan AgCl. 3) Penambahan larutan yang mengandung ion Ag ⁺ menyebabkan terjadinya endapan AgCl.	1	

Indikator Pembelajaran	Label Konsep	Penjelasa	n Konsep		naran nsep
	Zuber Homsep	Standar	Subjek Penelitian	В	S
		kiri sehingga beberapa PbCl ₂ mrngendap. Peristiwa tersebut adalah suatu aplikasi sederhana asas Le Châtelier, akibatnya PbCl ₂ lebih sukar larut dalam larutan yang mengandung Pb ²⁺ dari larutan lain daripada dalam air murni. Pengaruh yang sama akan terjadi jika suatu larutan pekat garam klorida yang mudah larut, seperti NaCl, ditambahkan ke larutan PbCl ₂ jenuh. Penambahan Cl ⁻ akan menggeser kesetimbangan ke kiri sehingga jumlah PbCl ₂ yang larut berkurang. Peristiwa yang dijelaskan di atas merupakan suatu contoh pengaruh ion senama. Dalam hal ini, Pb ²⁺ adalah ion senama ketika kita menambahkan Pb(NO ₃) ₂ dan Cl ⁻ adalah ion senama ketika kita menambakan NaCl. Pengaruh ion senama dapat mengurangi kelarutan suatu garam. (Brady,dkk., 2012, hlm. 838-839 dan Whitten, dkk., 2004 hlm. 829)	Gambar 8.4 Pengaruh ion senama terhadap kelarutan. Jika ke dalam kesetimbangan tersebut ditambahkan ion Cl ⁻ , kesetimbangan akan bergeser ke kiri sehingga mengakibatkan jumlah AgCl yang mengendap bertambah. Demikian juga jika ke dalam sistem kesetimbangan tersebut ditambahkan ion Ag ⁺ , sistem kesetimbangan akan bergeser ke kiri dan berakibat bertambahnya jumlah AgCl yang mengendap. Kesimpulannya, jika ke dalam sistem kesetimbangan kelarutan ditambahkan ion yang senama, kelarutan senyawa tersebut menjadi berkurang. Secara teoritis dapat dijelaskan dengan contoh soal berikut. (hlm. 297-298)		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Keber Kon		
manutor i emociujurun	Zuser Honsep	Standar		Subjek Penelitian	В	S
3.14.10. Menghitung kelarutan suatu zat dalam larutan yang mengandung ion senama berdasarkan data tetapan hasil kali kelarutan (K_{sp})	Perhitungan Kelarutan Zat dalam Larutan yang Mengandung Ion Senama berdasarkan Data Tetapan Hasil Kali Kelarutan (K _{sp})	Contoh Untuk magnesium florida, MgF ₂ , K _{sp} = 6,4 × 10 ⁻⁹ . (a) Hitung kelarutan molar magnesium florida dalam air murni. (b) Hitung kelarutan molar MgF ₂ dalam 0,10 M larutan natrium florida, NaF. (c) Bandingkan kedua kelarutan molar tersebut. Perencanaan Untuk bagian (a), kita tulis persamaan kimia yang tepat dan ekspresi kelarutan molar, gambar konsentrasi pada kesetimbangan, dan subtitusi ke ekspresi hasil kali kelarutannya. Untuk bagian (b), kita mengetahui bahwa NaF adalah suatu senyawa ionik yang mudah larut yang terdisosiasi sempurna menjadi ion-ionnya. MgF ₂ adalah suatu senyawa yang sukar larut. Kedua senyawa menghasilkan ion F sehingga ini adalah suatu kasus pengaruh ion senama. Kita tulis persamaan yang tepat dan ekspresi hasil kali kelarutan, gambar konsentrasi pada kesetimbangan, dan subtitusi ke dalam ekspresi hasil kali kelarutannya. Untuk bagian (c), kita bandingkan kelarutan molar dengan menghitung rasio keduanya. Penyelesaian (a) Kita asumsikan x = kelarutan molar MgF ₂ ,	K a) b) Ja a)	tersebut? Berapa kelarutan AgCl di dalam larutan NaCl 0,1 M? awab: Misal kelarutan AgCl dalam air: s mol/L AgCl(s) \rightleftharpoons Ag ⁺ (aq) + Cl ⁻ (aq) s mol/L s mol/L s mol/L K_{sp} AgCl = [Ag ⁺] [Cl ⁻] $2,0 \times 10^{-10} = (s)(s)$ $2,0 \times 10^{-10} = s^2$ $s = 1,41 \times 10^{-5}$ mol/L Atau dengan menggunakan rumus $s = \sqrt{Ksp}$ Didapatkan $s = 1,41 \times 10^{-5}$ mol/L	V	

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep			naran nsep
		Standar	Subjek Penelitian	В	S
		suatu garam sukar larut. $MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2F^-(aq)$ (reversible) $x \mod L \Longrightarrow xM = 2xM$ $K_{sp} = [Mg^{2+}][F^-]^2 = 6.4 \times 10^{-9}$ $(x)(2x)^2 = 6.4 \times 10^{-9}$ $x = 1.2 \times 10^{-3}$ 1,2 × 10 ⁻³ M = kelarutan molar MgF ₂ dalam air murni (b) NaF adalah suatu garam ionik yang mudah larut, sehingga, 0,10 M F dihasilkan dengan $NaF(s) \xrightarrow{H_2O} Na^+(aq) + F^-(aq)$ (complete) $0.10 M \Longrightarrow 0.10 M$ Kita asumsikan y = kelarutan molar MgF ₂ , suatu garam sukar larut. $MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2F^-(aq)$ (reversible) $y \mod L \Longrightarrow yM = 2yM$ Jumlah [F] adalah 0,10 M dari NaF ditambah 2y M dari MgF ₂ , atau (0,10 + 2y) M.	[Cl] = (n + 0,1) mol/L = 0,1 mol/L Oleh karena [Cl] yang berasal dari AgCl sangat sedikit dibandingkan [Cl] yang berasal dari NaCl, [Cl] yang berasal dari NaCl, [Cl] yang berasal dari NaCl, [Cl] yang berasal dari AgCl dapat diabaikan. K _{sp} AgCl = [Ag ⁺] [Cl] 2,0 x 10 ⁻¹⁰ = (n)(0,1) n = 2 x 10 ⁻⁹ mol/L Kelarutan AgCl dalam air 1,41 x 10 ⁻⁵ mol/L, jauh lebih besar daripada kelarutan AgCl dalam larutan NaCl 0,1 M yang besarnya 2 x 10 ⁻⁹ mol/L. Dari perhitungan tersebut terlihat jelas bahwa semakin besar konsentrasi ion yang senama (Cl]: klorida), semakin kecil kelarutannya. Anda dapat membuktikannya sendiri dengan mengambil konsentrasi NaCl 1 M. (hlm. 298-299)		

Indikator Pembelajaran	Label Konsep	Penjelasa	n Konsep		naran nsep
Ziminutor i emiociajaran	Lawer Ixomsep	Standar	Subjek Penelitian	В	S
		$K_{\rm sp} = [{\rm Mg^{2+}}][{\rm F^-}]^2 = 6.4 \times 10^{-9}$ $(y)(0.10 + 2y)^2 = 6.4 \times 10^{-9}$ Sangat sedikit MgF ₂ yang larut, sehingga y bernilai kecil. Hal ini menandakan bahwa 2y << 0,10, sehingga 0,10 + 2y \approx 0,10. Lalu			
		$(y)(0,10)^2 = 6,4 \times 10^{-9} dan y = 6,4 \times 10^{-7}$ $6,4 \times 10^{-7} M = kelarutan molar MgF_2 dalam 0,10 M$ NaF (c) Rasio kelarutan molar dalam air dengan kelarutan molar dalam $0,10 M$ larutan NaF adalah:			
		$\frac{\text{molar solubility (in H}_2\text{O})}{\text{molar solubility (in NaF solution)}} = \frac{1.2 \times 10^{-3} \text{ M}}{6.4 \times 10^{-7} \text{ M}} = \frac{1900}{1}$			
		Kelarutan molar MgF ₂ dalam 0,10 M NaF (6,4 × 10^{-7} M) mendekati 1900 kali lebh kecil daripada kelarutan molarnya dalam air murni (1,2 × 10^{-3} M). (Whitten, dkk., 2004 hlm. 829-830)			
3.14.11. Memprediksi terbentuknya endapan dari suatu reaksi berdasarkan hasil kali	Prediksi Pembentukan Endapan Suatu Reaksi	Kegunaan lain dari asas hasil kali kelarutan adalah perhitungan konsentrasi maksimum ion-ion yang ada dalam larutan. Dari perhitungan ini kita dapat menentukan apakah suatu endapan akan terbentuk	Nilai $K_{\rm sp}$ suatu zat dapat digunakan untuk memperkirakan terjadi atau tidaknya endapan suatu zat jika dua larutan yang mengandung ion-ion dari senyawa sukar larut dicampurkan. Untuk	V	

Indikator Pembelajaran	ajaran Label Konsep	Penjelasan Konsep		Kebenara Konsep	
manust remocajaran	Zuser Honsep	Standar	Subjek Penelitian	В	S
$\mathrm{ion}(Q_\mathrm{sp})$	berdasarkan Hasil Kali Ion (Q_{sp})	dalam suatu larutan tertentu dengan membandingkan $Q_{\rm sp}$ dengan $K_{\rm sp}$. Kuosien reaksi, Q , untuk reaksi umum dapat ditulis sebagai berikut. For $A + B \Longrightarrow cC + dD$, $Q = \frac{ C D ^d}{ A B ^b} \Longrightarrow \frac{\text{not necessarily equilibrium concentrations}}{\text{concentrations}}$ Kuosien reaksi memiliki bentuk yang sama seperti tetapan kesetimbangan, tetapi konsentrasi ion-ion pada kuosien reaksi tidak harus dalam keadaan kesetimbangan. Ketika diterapkan untuk kesetimbangan kelarutan, Q_{sp} umumnya disebut hasil kali ion karena bentuknya yaitu konsentrasi ion-ion hasil dipangkatkan koefisiennya. (Whitten, dkk., 2004, hlm. 716; hlm. 831; Petrucci, dkk, 2010, 793)	memperkirakan terjadi atau tidaknya endapan $A_m B_n$ dari larutan yang mengandung ion A^{n+} dan B^m , digunakan konsep hasil kali ion (Q_{sp}) : $Q_{sp} A_m B_n = [A^{n+}]^m [B^{m-}]^n$ (hlm. 293-294)		
		Jika $Q_{\rm sp} < K_{\rm sp}$ Terjadi proses penguraian padatan Tidak ada endapan; jika ada padatan, maka padatan dapat larut Jika $Q_{\rm sp} = K_{\rm sp}$ Larutan bersifat jenuh Padatan dan larutan berada dalam kesetimbangan; baik proses penguraian padatan maupun	 Jika Q_{sp} > K_{sp} maka akan terjadi endapan A_mB_n Jika Q_{sp} = K_{sp} maka akan terjadi larutan jenuh A_mB_n Jika Q_{sp} < K_{sp} maka belum terjadi larutan jenuh maupun endapan A_mB_n (hlm. 294) 		

Indikator Pembelajaran	Label Konsep	Penjelasa	Penjelasan Konsep		naran nsep
Indisactor I emociajaran	Lubel Hollsep	Standar	Subjek Penelitian	В	S
		pembentukan padatan terjadi			
		$Q_{\rm sp} > K_{\rm sp}$			
		Proses pembentukan padatan; terjadi pengendapan			
		untuk membentuk lebih banyak padatan			
		(Whitten, dkk., 2004, hlm. 831)			
		Contoh	Contoh Soal		
		Apakah 100 mL natrium sulfat, Na ₂ SO ₄ , 0,00075	Ke dalam 100 mL larutan AgNO ₃ 0,001 M		
		M yang dicampur dengan 50 mL barium klorida,	ditambahkan 100 mL larutan Na ₂ CO ₃ 0,001 M.		
		BaCl ₂ , 0,015 M akan membentuk suatu endapan?	Selidikilah dengan perhitungan apakah pada		
		Perencanaan	penambahan tersebut sudah mengakibatkan		
		Kita mencampurkan dua larutan garam ionik yang	terjadinya endapan Ag_2CO_3 . Diketahui K_{sp} Ag_2CO_3		
		mudah larut. Pertama kita cari jumlah masing-	pada suhu 25°C adalah 6,3 x 10 ⁻¹² .		
		masing zat terlarut pada pencampuran langsung	Jawab:		
		tersebut. Lalu kita cari molaritas masing-masing zat	$AgNO_3 = 0.001 \text{ M} \times 100 \text{ mL}$		
		terlarut pada pencampuran langsung tersebut. Lalu	= 0,1 mmol		
		kita cari konsentrasi masing-masing ion dalam	$Ag^{+} = 0.1 \text{ mmol}$		
		larutan baru. Sekarang kita pertanyakan "Apakah	$Na_2CO_3 = 0.001 \text{ M} \times 100 \text{ mL}$		
		campuran ion-ion dalam larutan tersebut	= 0.1 mmol		
		membentuk senyawa yang sukar larut?"	$CO_3^{2-} = 0.1 \text{ mmol}$		
		Jawabannya adalah "Ya, Ba ²⁺ dan SO ₄ ²⁻ dapat	Volume campuran 200 mL, sehingga:		
		membentuk BaSO ₄ ," sehingga kita hitung Q_{sp} dan membandingkannya dengan K_{sp} .	$[Ag^{+}] = \frac{0.1}{200} \text{ mol/L} = 5 \text{ x } 10^{-4} \text{ mol/L}$		
		Penyelesaian	$[CO_3^{2-}] = \frac{0.1}{200} \text{ mol/L} = 5 \times 10^{-4} \text{ mol/L}$		
		Kita cari masing-masing jumlah zat terlarut pada	$Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}aq)$		
		Kita cari masing-masing juman zat terrarut pada	$Ag_2CO_3(s) \leftarrow 2Ag(aq) + CO_3(aq)$		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep			naran nsep
		Standar	Subjek Penelitian	В	S
		pencampuran langsung tersebut. $ \geq \text{ mmol Na}_2\text{SO}_4 = 100. \text{ mL} \times \frac{0.00075 \text{ mmol Na}_2\text{SO}_4}{\text{mL}} $ $ = 0.075 \text{ mmol Na}_2\text{SO}_4 $ $ \geq \text{ mmol BaCl}_2 = 50. \text{ mL} \times \frac{0.015 \text{ mmol BaCl}_2}{\text{mL}} $	$Q_{\rm sp} {\rm Ag_2CO_3} = [{\rm Ag^+}]^2 [{\rm CO_3}^{2^-}]$ = $(5 \times 10^{-4})^2 (5 \times 10^{-4})$ = $1,25 \times 10^{-10}$ $K_{\rm sp} {\rm Ag_2CO_3} = 6,3 \times 10^{-12} ({\rm sudah \ diketahui})$ Oleh karena $Q_{\rm sp} > K_{\rm sp}$, pada pencampuran ini telah terjadi endapan ${\rm Ag_2CO_3}$.		
		= 0.75 mmol BaCl ₂ Ketika larutan dicampurkan, volume dapat ditambahkan untuk menentukan volume akhir larutan. Volume larutan campuran = 100 mL + 50 mL + 150 mL	Contoh Soal Ke dalam akuades yang volumenya 100 mL ditambahkan masing-masing 1 mL larutan Pb(NO ₃) ₂ 0,01 M dan 1 mL larutan NaCl 0,01 M. Dengan menganggap bahwa volume larutan tetap 100 mL dan nilai $K_{\rm sp}$ PbCl ₂ = 2,0 x 10 ⁻⁵ , tunjukkan dengan perhitungan apakah akan terjadi endapan pada reaksi di atas.		
		Lalu kita cari molaritas masing-masing zat terlarut pada pencampuran langsung tersebut. $M_{\rm Na2SO4} = \frac{0.075~\rm mmol~Na2SO4}{150.~\rm mL} = 0.00050~M~\rm Na2SO4$ $M_{\rm BaCl2} = \frac{0.75~\rm mmol~BaCl2}{150.~\rm mL} = 0.0050~M~\rm BaCl2$	Jawab: Jika volume dianggap tetap 100 mL, konsentrasi ion Pb^{2+} dan konsentrasi ion Cl^{-} yang terdapat dalam larutan dapat dihitung sebagai berikut. $Pb(NO_3)_2 = 1 \text{ mL x 0,01 M}$ $= 0,01 \text{ mmol}$ $ion Pb^{2+} = 0,01 \text{ mmol} [Pb^{2+}] = \frac{0,01 \text{ mmol}}{100 \text{ mL}}$		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep			naran nsep
munici i embendarum	Zaber Honsep	Standar	Subjek Penelitian	В	S
		Sekarang kita cari konsentrasi masing-masing ion dalam larutan tersebut. Na ₂ SO ₄ (s) $\xrightarrow{100\%}$ 2Na ⁺ (aq) + SO ₄ ² -(aq) (to completion) 0.00050 $M \Longrightarrow 0.0010 M$ 0.00050 M BaCl ₂ (s) $\xrightarrow{100\%}$ Ba ²⁺ (aq) + 2Cl ⁻ (aq) (to completion) 0.0050 $M \Longrightarrow 0.0050 M$ 0.010 M Kita pertimbangkan dua jenis senyawa yang dicampurkan dan tentukan apakah suatu reaksi dapat terjadi. Keduanya, Na ₂ SO ₄ dan BaCl ₂ adalah garam ionik yang mudah larut. Pada pencampuran tersebut, larutan baru mengandung campuran ionion Na ⁺ , SO4 ²⁻ , Ba ²⁺ , dan Cl ⁻ . Kita harus mempertimbangkan kemungkinan pembentukan dua senyawa baru, NaCl dan BaSO ₄ . Natrium klorida adalah senyawa ionik yang mudah larut sehingga Na ⁺ and Cl ⁻ tidak bergabung dalam larutan. BaSO ₄ atan mengendap dalam larutan jika $Q_{sp} > K_{sp}$ BaSO ₄ . K_{sp} untuk BaSO ₄ adalah 1,1 x10 ⁻¹⁰ . Penyubtitusian [Ba ²⁺] = 0,0050 M dan [SO ₄ ²⁻] = 0,00050 M ke ekspresi Q_{sp} untuk BaSO ₄ , kita dapatkan	$= 10^{-4} \text{ mol/L}$ $NaCl = 1 \text{ mL x 0,01 M}$ $= 0,01 \text{ mmol}$ $ion Cl^{-} = 0,01 \text{ mmol}$ $[Cl^{-}] = \frac{0,01 \text{ mmol}}{100 \text{ mL}}$ $= 10^{-4} \text{ mol/L}$ $Q_{sp} \text{ PbCl}_2 = [\text{Pb}^{2+}] [\text{Cl}^{-}]^2$ $= (10^{-4}) (10^{-4})^2$ $= 10^{-12}$ $K_{sp} \text{ PbCl}_2 = 2,0 \text{ x 10-5}$ Oleh karena $Q_{sp} < K_{sp}$, dapat diperkirakan bahwa dalam reaksi tersebut tidak dihasilkan endapan PbCl ₂ . (hlm. 294-295)		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
		Standar	Subjek Penelitian	В	S
		$Q_{\rm sp} = [{\rm Ba}^{2+}][{\rm SO_4}^{2-}]$ = $(5.0 \times 10^{-3})(5.0 \times 10^{-4})$ = $2.5 \times 10^{-6} (Q_{\rm sp} > K_{\rm sp})$ Karena $Q_{\rm sp} > K_{\rm sp}$ padatan BaSO ₄ akan mengendap hingga $[{\rm Ba}^{2+}][{\rm SO_4}^{2-}]$ sama dengan $K_{\rm sp}$ BaSO ₄ .			
2.14.12.34	D 11:	(Whitten, dkk., 2004, hlm. 831-832)		.1	
3.14.13. Menghitung konsentrasi untuk mengendapkan ion tertentu berdasarkan data tetapan hasil kali kelarutan (K_{sp})	Perhitungan Konsentrasi untuk Mengendapkan Ion Tertentu berdasarkan Data Tetapan Hasil Kali Kelarutan (K_{sp})	Contoh Padatan perak nitrat ditambahkan perlahan ke suatu larutan yang mengandung NaCl, NaBr, dan NaI masing-masing 0,0010 M. Hitung [Ag ⁺] yang dibutuhkan untuk menginisisasi pengendapan masing-masing perak halida. Untuk AgI, $K_{\rm sp} = 1.5$ x 10^{-16} ; untuk AgBr, $K_{\rm sp} = 3.3$ x 10^{-13} ; dan untuk AgCl, $K_{\rm sp} = 1.8$ x 10^{-10} . Perencanaan Kita diberikan suatu larutan yang mengandung ion Cl ⁻ , Br ⁻ , and I ⁻ dengan konsentrasi yang sama; semuanya membentuk garam perak yang sukar larut. Lalu secara perlahan kita tambahkan ion Ag ⁺ . Kita menggunakan masing-masing $K_{\rm sp}$ untuk menentukan [Ag ⁺] yang harus berlebih <i>untuk</i>	Contoh Soal Suatu larutan yang mengandung ion Mg^{2+} dan ion Mn^{2+} dengan konsentrasi masing-masing 0,1 M akan dipisahkan dengan menaikkan nilai pH larutan (dengan menambahkan NH ₃ . Berapa pH larutan agar Mn^{2+} mengendap sebagai $Mn(OH)_2$, sedangkan Mg^{2+} tetap di dalam larutan. Diketahui K_{sp} $Mg(OH)_2 = 1,8 \times 10^{-11}$ dan K_{sp} $Mn(OH)_2 = 1,9 \times 10^{-13}$. Jawab: Jika diperhatikan dari nilai K_{sp} kedua zat tersebut, terlihat bahwa $Mn(OH)_2$ lebih mudah mengendap daripada $Mg(OH)_2$ sehingga dapat dicari $[OH-]$ untuk larutan jenuh $Mg(OH)_2$. Di dalam larutan terdapat ion $Mg^{2+} = 0,1$ M	V	

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
Ziminute i emociajatun		Standar	Subjek Penelitian	В	S
		menginisiasi pengendapan masing-masing garam. Penyelesaian Kita hitung [Ag ⁺] yang dibutuhkan untukmemulai pengendapan masing-masing perak halida. Hasil kali kelarutan untuk AgI adalah $[Ag^+][I^-] = 1.5 \times 10^{-16}$ $[\Gamma] = 1,0 \times 10^{-3} \text{ M, sehingga } [Ag^+] \text{ yang harus berlebih untuk menginisiasi pengendapan AgI adalah}$ $[Ag^+] = \frac{1.5 \times 10^{-16}}{[\Gamma^-]} = \frac{1.5 \times 10^{-16}}{1.0 \times 10^{-3}} = 1.5 \times 10^{-13} \text{ M}$ Oleh karena itu, AgI akan mulai mengendap ketika $[Ag^+] > 1,5 \times 10^{-13} \text{ M.}$ Mengulang perhitungan seperti itu untuk perak bromide memberikan $[Ag^+][Br^-] = 3.3 \times 10^{-13}$ $[Ag^+] = \frac{3.3 \times 10^{-13}}{[Br^-]} = \frac{3.3 \times 10^{-13}}{1.0 \times 10^{-3}} = 3.3 \times 10^{-10} \text{ M}$ Lalu, $[Ag^+] > 3,3 \times 10^{-10} \text{ M dibutuhkan untuk memulai pengendapan AgBr.}$	ion $Mn^{2+} = 0,1 M$ $K_{sp} Mg(OH)_2 = 1,8 \times 10^{-11}$ $K_{sp} Mn(OH)_2 = 1,9 \times 10^{-13}$ Larutan jenuh $Mg(OH)_2$ terjadi jika: $[Mg^{2+}] [OH^-]^2 = K_{sp} Mg(OH)_2$ Telah diketahui bahwa $[Mg^{2+}] = 0,1 M$, maka $(0,1) [OH^-]^2 = 1,8 \times 10^{-11}$ $[OH^-]^2 = 1,8 \times 10^{-10}$ $[OH^-] = \sqrt{1,8 \times 10^{-11}}$ $= 1,34 \times 10^{-5}$ $pOH = -log 1,34 \times 10^{-5}$ $= 4,87$ $pH = 9,13$ Pada $pH = 9,13$ larutan Mg^{2+} belum mengendap sebagai $Mg(OH)_2$, sebab pada pH tersebut Q_{sp} $Mg(OH)_2 = K_{sp} Mg(OH)_2$ dan baru terbentuk larutan jenuh $Mg(OH)_2$. Bagaimana dengan Mn^{2+} , apakah sudah mengendap sebagai $Mn(OH)_2$? Untuk itu, kita selidiki Q_{sp} $Mn(OH)_2$ pada $pH = 9,13$. $[Mn^{2+}] = 0,1 M$ (sudah diketahui) $[OH^-] = 1,34 \times 10^{-5} M$ (pada $pH = 9,13$)		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
indimitor i emocinjurum		Standar	Subjek Penelitian	В	S
		Untuk memulai pengendapan perak klorida, [Ag ⁺][Cl ⁻] = 1.8 × 10 ⁻¹⁰ [Ag ⁺] = \frac{1.8 \times 10^{-10}}{[Cl^-]} = \frac{1.8 \times 10^{-10}}{1.0 \times 10^{-3}} = 1.8 \times 10^{-7} M Untuk mengendapkan AgCl, kita harus mempunyai [Ag ⁺] > 1,8 x 10 ⁻⁷ M. Kita sudah menunjukkan bahwa untuk mendapkan AgI, [Ag ⁺] > 1,5 x 10 ⁻¹³ M untuk mendapkan AgBr, [Ag ⁺] > 3,3 x 10 ⁻¹⁰ M untuk mendapkan AgCl, [Ag ⁺] > 1,8 x 10 ⁻⁷ M Perhitungan ini menyatakan bahwa ketika AgNO ₃ ditambahkan perlahan ke larutan yang mengandung masing-masing 0,0010 M NaI, NaBr, dan NaCl, AgI akan mengendap pertama, AgBr mengendap kedua, dan AgCl mengendap terakhir. (Whitten, dkk., 2004, hlm. 834-835)	$Q_{\rm sp}$ Mn(OH) ₂ = [Mn ²⁺] [OH ⁻] ² = (0,1) (1,34 x 10 ⁻⁵) = 1,8 x 10 ⁻¹¹ $K_{\rm sp}$ Mn(OH) ₂ = 1,9 x 10 ⁻¹³ (diketahui) maka, $Q_{\rm sp}$ Mn(OH) ₂ > $K_{\rm sp}$ Mn(OH) ₂ artinya Mn(OH) ₂ sudah mengendap. Jadi, pada pH = 9,13 ion Mn ²⁺ sudah mengendap sebagai Mn(OH) ₂ , sedangkan ion Mg ²⁺ tetap sebagai larutan. Dengan demikian, kedua ion dapat terpisah setelah dilakukan penyaringan (filtrasi). (hlm. 295-296)		
3.14.14. Menjelaskan pengaruh	Pengaruh	Ungkapan "yang sejenis melarutkan yang sejenis"	a. Jenis pelarut	$\sqrt{}$	
kepolaran pelarut	Kepolaran Pelarut	membantu dalam memprediksi kelarutan suatu zat	Senyawa polar (mempunyai kutub muatan)		
terhadap kelarutan	terhadap	dalam suatu pelarut. Kita harus menggunakan	akan mudah larut dalam senyawa polar, misalnya		
	Kelarutan	pelarut polar untuk melarutkan zat terlarut polar	alcohol dan semua asam merupakan senyawa polar		

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
		Standar	Subjek Penelitian	В	S
		atau ionik dan pelarut nonpolar untuk melarutkan zat terlarut nonpolar. Ketika suatu zat (zat terlarut) larut dalam zat lainnya (pelarut), partikel zat terlarut akan menyebar ke seluruh pelarut. Partikel zat terlarut tersebut menempati posisi yang biasanya ditempati molekul pelarut. Kemudahan partikel zat terlarut menggantikan molekul pelarut bergantung pada kekuatan relatif dari tiga jenis interaksi: Interaksi pelarut-pelarut Interaksi zat terlarut-zat terlarut Interaksi pelarut-zat terlarut	sehingga mudah larut dalam air yang juga merupakan senyawa polar. Selain senyawa polar, senyawa ion seperti NaCl juga mudah larut dalam air dan terurai menjadi ion-ion. Senyawa nonpolar akan mudah larut dalam senyawa nonpolar, misalnya lemak mudah larut dalam minyak. Senyawa polar umumnya tidak larut dalam senyawa nonpolar, misalnya alkohol tidak larut dalam minyak tanah. (hlm. 288)		
		Larutan akan terbentuk ketika jenis dan besar ketiga jenis interaksi tersebut sama. Dengan demikian, padatan ionik seperti NaCl larut dalam pelarut polar seperti air karena daya tarik ion-dipol antara ion Na ⁺ dan Cl ⁻ dan molekul H ₂ O yang polar sama besar dengan daya tarik dipol-dipol antar molekul air dan daya tarik ion-ion antara ion Na ⁺ dan Cl ⁻ . Dengan cara yang sama, zat organik nonpolar seperti kolesterol, C ₂₂ H ₄₆ O, larut dalam pelarut organik nonpolar seperti benzene, C ₆ H ₆ ,			

Indikator Pembelajaran	Label Konsep	Penjelasan Konsep		Kebenaran Konsep	
	Label Konsep	Standar	Subjek Penelitian	В	S
		karena kesamaan gaya disperse London yang terjadi di antara kedua jenis molekul. Tetapi, minyak, tidak larut dalam air karena kedua cairan memiliki jenis gaya antarmolekul yang berbeda. (Chang & Overby, 2011, hlm. 437-438; Zumdahl & Zumdahl, 2010, hlm. 501-502; McMurry, hlm. 431)			