TABLE OF CONTENT

PREFACE .. i
ACKNOWLEDGMENT .. ii
ABSTRACT .. iv
ABSTRAK ... v
TABLE OF CONTENT .. vi
LIST OF TABLE ... ix
LIST OF FIGURE ... x
LIST OF APPENDIX ... xii

CHAPTER I INTRODUCTION .. 1
 A. Background of Research ... 1
 B. Problem Statement ... 8
 C. Scope of Study ... 8
 D. Aim of the Study .. 9
 E. Significance of Study .. 9
 F. Assumption .. 10
 G. Hypotheses ... 10
 H. Organizational Structure .. 11
 I. Operational Definition ... 12

CHAPTER II LITERATURE REVIEW .. 13
 A. Science, Technology, Engineering and Mathematics (STEM) education 13
 B. Instructional Material in Science Instruction .. 16
 C. Conceptual Understanding of Science .. 20
 D. Engineering Design Process as A Tool to Generate Engineering Design Behaviors .. 25
 E. Teamwork Skills .. 30

Ineu Gustiani, 2016
LEARNING SCIENCE THROUGH STEM BASE INSTRUCTIONAL MATERIAL: ITS EFFECTIVENESS IN IMPROVING STUDENTS CONCEPTUAL UNDERSTANDING AND ITS EFFECT TOWARDS ENGINEERING DESIGN BEHAVIORS AND TEAMWORK SKILLS
Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
F. STEM integrated concept in simple machines.......................... 32

CHAPTER III RESEARCH METHODOLOGY 38
A. Method and Design of Research ... 38
B. Population and Sample ... 39
C. Research Instruments .. 39
D. Research Procedures ... 59
E. Scheme of Research ... 62
F. Data Processing Technique and Analysis 63

CHAPTER IV RESULT AND DISCUSSION 69
A. STEM based Instructional Material and Students’ Conceptual Understanding of Science 69
B. STEM based Instructional Material and Students’ Engineering Design Behaviors .. 77
1. Understand the Challenge ... 78
2. Build Knowledge and Do Research 83
3. Generate Ideas ... 86
4. Represent Ideas .. 90
5. Weigh Option and Make Decision 96
6. Conduct Experiment ... 99
7. Troubleshoot .. 103
8. Revise/Iterate .. 106
9. Reflect on Process ... 110
C. STEM based Instructional Material and Students’

Teamwork Skills ... 114
1. Contributing to the Team’s Work 117
2. Interacting with Teammates ... 119
3. Keeping the Team on Track .. 121
4. Expecting Quality ... 123
5. Having Relevant Knowledge, Skills and Abilities 125

CHAPTER V CONCLUSION, IMPLICATION AND
RECOMMENDATION .. 127
A. Conclusion ... 127
B. Implication ... 129
C. Recommendation ... 130
REFERENCES ... 131
APPENDICES .. 149
LIST OF TABLE

Table

2.1 Revised Version of Bloom’s Taxonomy of Cognitive Understanding...... 24
2.2 Informed Design Patterns ... 28
3.1 Criteria of Test Item Validity... 40
3.2 Recapitulation of Conceptual Understanding Instrument Validation...... 41
3.3 Blueprint of Conceptual Understanding Test 42
3.4 Reliability Criteria of Test ... 43
3.5 Difficulty Level of Test Item ... 44
3.6 Discrimination Power Index Criteria .. 45
3.7 Informed Design Learning and Teaching Matrix 46
3.8 Categorization of Students’ Engineering Design Behavior 48
3.9 Rubric of Students’ Engineering Design Behavior.................................. 49
3.10 CATME Likert-short Observation Sheet .. 53
3.11 Classification of N-Gain Interpretation .. 64
3.12 Students’ Teamwork Skills Category .. 68
3.13 Students’ ICC Category .. 68
4.1 Statistical Analysis of Students’ Conceptual Understanding Test........... 68
4.2 Percentage of Students’ Posttest Correct Answers based on
 Level of Cognitive ... 70

Ineu Gustiani, 2016
LEARNING SCIENCE THROUGH STEM BASE INSTRUCTIONAL MATERIAL: ITS EFFECTIVENESS IN
IMPROVING STUDENTS CONCEPTUAL UNDERSTANDING AND ITS EFFECT TOWARDS ENGINEERING
DESIGN BEHAVIORS AND TEAMWORK SKILLS
Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
LIST OF FIGURE

FIGURE
2.1 First Class Lever .. 34
2.2 First Class Lever in Human Body .. 34
2.3 Second Class Lever .. 35
2.4 Second Class Lever in Human Body .. 35
2.5 Third Class Lever ... 36
2.6 Third Class Lever in Human Body ... 36
3.1 Quasi Experiment Pretest-Posttest Design .. 38
3.2 Non-STEM based Instructional Material ... 55
3.3 STEM based Instructional Material ... 57
4.1 Students’ engineering design behavior profile on 1st indicator 79
4.2 Students’ engineering design behavior development on 1st indicator 80
4.3 Students’ engineering design behavior profile on 2nd indicator 84
4.4 Students’ engineering design behavior development on 2nd indicator 85
4.5 Students’ engineering design behavior profile on 3rd indicator 87
4.6 Students’ engineering design behavior development on 3rd indicator 88
4.7 Students’ engineering design behavior profile on 4th indicator 91
4.8 Students’ engineering design behavior development on 4th indicator 92
4.9 Students’ egg cracker design development of experiment group 93
4.10 Students’ egg cracker design development of control group 95
4.11 Students’ engineering design behavior profile on 5th indicator 97
4.12 Students’ engineering design behavior development on 5th indicator 98
4.13 Students’ engineering design behavior profile on 6th indicator 100
4.14 Students’ engineering design behavior development on 6th indicator ... 101
4.15 Students’ engineering design behavior profile on 7th indicator 104
4.16 Students’ engineering design behavior development on 7th indicator 105
4.17 Students’ engineering design behavior profile on 8th indicator 107
4.18 Students’ engineering design behavior development on 8th indicator ... 108
4.19 Students’ engineering design behavior profile on 9th indicator 111
4.20 Students’ engineering design behavior development on 9th indicator 112
4.21 Rating Scale of Students’ Teamwork Skills .. 114
4.22 Students’ rating scale on contributing to the team’s work 117
4.23 Students’ rating scale on interacting with teammates 119
4.24 Students’ rating scale on keeping the team on track 121
4.25 Students’ rating scale on expecting quality .. 123
4.26 Students’ rating scale on having relevant knowledge, skill and abilities .. 125
LIST OF APPENDIX

APPENDIX

A. SETS OF INSTRUCTION

1. Lesson Plan of STEM based Instructional Material Class 149
2. Lesson Plan of non-STEM based Instructional Material Class 158
3. Non-STEM based Instructional Material .. 164
4. Students’ worksheet of non-STEM based Instructional Material 166
5. STEM based Instructional Material ... 167
6. Students’ worksheet of STEM based Instructional Material 168

B. RESEARCH INSTRUMENT

1. Blueprint of Conceptual Understanding Test Item 170
2. Conceptual Understanding Test ... 179
3. Students’ Engineering Design Behaviors Observation Sheet 188
4. Students’ Teamwork Skills Observation Sheet 191
5. Blueprint of STEM-based Instructional Material Validation 195
6. STEM-based Instructional Material Validation 196

C. INSTRUMENT VALIDATION

1. Recapitulation of STEM-based Instructional Material Validation 204

Ineu Gustiani, 2016
LEARNING SCIENCE THROUGH STEM BASE INSTRUCTIONAL MATERIAL: ITS EFFECTIVENESS IN IMPROVING STUDENTS CONCEPTUAL UNDERSTANDING AND ITS EFFECT TOWARDS ENGINEERING DESIGN BEHAVIORS AND TEAMWORK SKILLS
Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
2. Recapitulation of Conceptual Understanding Test Item Analysis 207

D. RESEARCH DATA ... 208

1. Recapitulation of Students’ Conceptual Understanding Pretest,
 Posttest and N-Gain Scores... 208
2. Recapitulation of Statistical Analysis of Students’ Conceptual
 Understanding Test .. 211
3. Recapitulation of Students’ Engineering Design Behaviors
 Observation .. 214
4. Recapitulation of Intraclass Correlation Coefficient
 of Teamwork Skills.. 246
5. Recapitulation of Students’ Teamwork Skills Rating............................... 247

E. DOCUMENTATION .. 249

1. Research Documentation .. 249
2. Letter of Research Permission .. 251