DAFTAR ISI

LEMBAR PENGESAHAN .. i
HALAMAN PERNYATAAN .. ii
HALAMAN UCAPAN TERIMA KASIH .. iii
ABSTRAK ... v
DAFTAR ISI ... vii
DAFTAR TABEL ... viii
DAFTAR GAMBAR ... ix
DAFTAR LAMPIRAN ... xii

BAB I PENDAHULUAN .. 1
1.1 Latar Belakang Penelitian .. 1
1.2 Rumusan Masalah Penelitian ... 3
1.3 Tujuan Penelitian .. 4
1.4 Manfaat Penelitian ... 4
1.5 Struktur Organisasi Skripsi ... 5

BAB II KAJIAN PUSTAKA .. 6
2.1 Generator AC Sinkron .. 6
2.1.1 Rangkaian Pengganti dari Generator Sinkron ... 9
2.1.2 Kecepatan Putaran Generator ... 11
2.1.3 Tegangan Internal Generator .. 11
2.2 Kontrol Lup Terbuka dan Kontrol Lup Tertutup ... 12
2.2.1 Penyederhanaan Diagram Blok .. 13
2.3 Model linier dari Sistem AVR .. 14
2.4 Kriteria Kestabilan Routh Huwritz ... 16
2.5 Karakteristik Kontroler PID ... 18
2.5.1 Kontroler Proportional ... 18
2.5.2 Kontroler Integral ... 19
2.5.3 Kontroler Derivative ... 20
2.5.4 Kontroler PID .. 21

Muhammad Falah Aranza, 2016
TUNING KONTROLER PID PADA SISTEM AVR DI CIRATA II DENGAN MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION
Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu
BAB III METODE PENELITIAN ... 40
3.1 Metode Penelitian ... 40
3.2 Software Matlab ver.2009 ... 41
3.3 Data Penelitian .. 41
3.4 Desain Penelitian .. 42
3.5 Langkah-Langkah Penelitian .. 43
3.6 Algoritma PSO-PID ... 45
3.7 Perhitungan Manual ... 47

BAB IV TEMUAN DAN PEMBAHASAN ... 50
4.1 Eksitasi pada Cirata .. 50
4.2 Penerapan Kriteria Kestabilan Routh-Huwritz 52
4.3 Penyederhanaan Diagram Blok ... 54
 4.3.1 Penyederhanaan Diagram Blok AVR tanpa Kontroler PID 54
 4.3.2 Penyederhanaan Diagram Blok Sistem AVR dengan Kontroler PID 55
4.4 Analisis Transien ... 56
 4.4.1 Sistem AVR tanpa Kontroler PID ... 56
 4.4.2 Sistem AVR dengan Kontroler ZN-PID 57
 4.4.3 Sistem AVR dengan Kontroler PSO-PID 58
 4.4.3.1 Insialisasi Parameter Awal ... 59
 4.4.3.2. Hasil Penerapan Particle Swarm Optimization (PSO) pada PID 60
4.5 Kestabilan Root Locus .. 63
 4.5.1 Analisis Kestabilan Root Locus Sistem Tanpa PID ... 63
 4.5.2 Analisis Kestabilan Root Locus Sistem dengan ZN-PID .. 64
 4.5.3 Analisis Kestabilan Root Locus Sistem dengan PSO-PID ... 65
4.6 Respon Frekuensi ... 67
 4.6.1 Analisis Respon Frekuensi untuk Sistem tanpa PID .. 67
 4.6.2 Analisis Respon Frekuensi untuk Sistem ZN-PID ... 69
 4.6.3 Analisis Respon Frekuensi untuk Sistem PSO-PID ... 70

BAB V SIMPULAN, IMPLIKASI DAN REKOMENDASI ... 72
 5.1 Simpulan .. 72
 5.2 Implikasi ... 73
 5.3 Rekomendasi .. 73

DAFTAR PUSTAKA ... 74
DAFTAR TABEL

Tabel 2 1. Aturan Aljabar Diagram Blok ... 13
Tabel 2 2. Efek Perubahan Kp, Ki & Kd ... 22
Tabel 2 3. Aturan Metode Ziegler-Nichols dengan Sinyal Input Step 24
Tabel 3 1. Data Parameter AVR pada PT PJB UP Cirata 41
Tabel 3 2. Aturan Aljabar Diagram Blok yang Digunakan 48
Tabel 4 1. Analisis Transien Sistem AVR dengan Nilai Ks [0.5 3] tanpa Kontroler PID .. 53
Tabel 4 2. Harga dan Keterangan Insialisasi Parameter PSO 60
Tabel 4 3. Hasil Analisis Transien dari Tiga Kondisi ... 63
Tabel 4 4. Hasil Analisis Kestabilan Root Locus ... 67
Tabel 4 5. Hasil Analisis Respon Frekuensi dari Diagram Bode 71
DAFTAR GAMBAR

Gambar 2.1 Rotor pada Generator AC Sinkron ... 6
Gambar 2.2 Stator pada Generator AC Sinkron di Pembangkit Cirata 7
Gambar 2.3 Eksitasi Menggunakan Brush .. 8
Gambar 2.4 Eksitasi debgan Brushless ... 8
Gambar 2.5. Rangkaian Pengganti Generator AC Sinkron .. 9
Gambar 2.6. Rangkaian Pengganti Generator Tiga Fasa .. 10
Gambar 2.7. Hubung Bintang dan Hubung Delta .. 10
Gambar 2.8. Diagram Blok Sistem Kontrol Lup Terbuka ... 12
Gambar 2.9. Diagram Blok Sistem Kontrol Lup Tertutup ... 12
Gambar 2.10. Diagram Blok AVR .. 15
Gambar 2.11. Diagram Blok Kontroler Proportional ... 19
Gambar 2.12. Diagram Blok Pengontrol Integral ... 20
Gambar 2.13. Diagram Blok Pengontrol Derivative ... 21
Gambar 2.15. Step Response Sistem ... 23
Gambar 2.16. Kurva Aturan Ziegler-Nichols ... 23
Gambar 2.17. Pergerekan Sekelompok Burung ... 26
Gambar 2.18. Cara Menggambar Sudut Berangkat. [sudut berangkat = 180° + (θ₁ + θ₂ − φ₁)] ... 32
Gambar 2.19. Kurva Respon Frekuensi 1/jω Sebelah Kiri dan jω Sebelah Kanan 34
Gambar 2.20. Kurva Magnitud Beserta Sudut Fasa untuk Faktor Orde Pertama 35
Gambar 2.21. Kurva Diagram Plot dari Faktor Kudratik Magnitud beserta dengan Sudut Fasa .. 36
Gambar 2.22. Gain Margin dan Fasa Margin dari Sistem yang Stabil 37
Gambar 2.23. Diagram Bode yang Menunjukan Frekuensi Cut Off dan Bandwidth.. 38
Gambar 3.1. Diagram Blok AVR ... 41
Gambar 3.2. One Line Diagram Eksitasi pada PJB UP Cirata .. 42
Gambar 3.3. Diagram Alir (Flow Chart) Langkah-langkah Penelitian Skripsi 44
Gambar 3.4. Diagram Alir (Flow Chart) Algoritma PSO .. 45
Gambar 4.1. Proses Eksitasi pada Pembangkit Cirata .. 51
Gambar 4.2. Step Response Sistem AVR tanpa Kontroler PID dengan Nilai Ks (0.5 ≤ Ks ≤ 3) .. 53
Gambar 4.3. Diagram Blok AVR tanpa Kontroler PID dengan Nilai Ks = 1 55
Gambar 4.4. Diagram Blok Sistem AVR dengan Kontroler PID ... 56
Gambar 4.5. Step Response Sistem tanpa Kontroler PID ... 57
Gambar 4.6. Step Response dengan Metode Ziegler-Nichols (ZN-PID) .. 58
Gambar 4.7. Pergerakan Partikel yang Berosilasi .. 60
Gambar 4.9. Fungsi ITAE pada Simulink Matlab ... 61
Gambar 4.10. Kecenderungan Hasil Pencarian yang Konvergen dari PSO .. 61
Gambar 4.11. Step Response dengan Algoritma PSO-PID .. 62
Gambar 4.13. Kurva Root Locus untuk Sistem tanpa PID ... 64
Gambar 4.15. Kurva Root Locus untuk Sistem dengan PSO-PID .. 66
Gambar 4.16. Kurva Root Locus dari Ketiga Kondisi (Tanpa PID, ZN-PID dan PSO-PID) 67
Gambar 4.17. Diagram Bode untuk Sistem tanpa PID ... 68
Gambar 4.18. Diagram Bode untuk Sistem dengan ZN-PID .. 69
Gambar 4.19. Diagram Bode untuk Sistem PSO-PID .. 70
Gambar 4.20. Diagram Bode untuk Sistem tanpa PID, Sistem ZN-PID dan Sistem PSO-PID 71
DAFTAR LAMPIRAN

Lampiran 1. Technical Data System Excitation Cirata II
Lampiran 2. Gambar-gambar komponen pada proses eksitasi Cirata II
Lampiran 3. Fungsi Alih dan Coding Routh-Huwritz [0.5-3]
Lampiran 4. Penyederhanaan Diagram Blok Sistem AVR tanpa PID
Lampiran 5. Penyederhanaan Diagram Blok Sistem AVR dengan PID
Lampiran 6. Coding PSO dan Coding ITAE pada Matlab
Lampiran 8. Coding Root Locus dan Coding Diagram Bode pada Matlab