Rohmah, Kartika Ainur (2016) OPTIMAL ANOMALOUS SHORT TERM LOAD FORECASTING BERBASIS ALGORITMA FEED FORWARD BACKPROPAGATION. S1 thesis, Universitas Pendidikan Indonesia.
|
Text
S_TE_1100243_Title.pdf Download (174kB) | Preview |
|
|
Text
S_TE_1100243_Abstract.pdf Download (186kB) | Preview |
|
|
Text
S_TE_1100243_Table_of_content.pdf Download (207kB) | Preview |
|
|
Text
S_TE_1100243_Table_of_content.pdf Download (207kB) | Preview |
|
|
Text
S_TE_1100243_Chapter1.pdf Download (169kB) | Preview |
|
Text
S_TE_1100243_Chapter2.pdf Restricted to Staf Perpustakaan Download (353kB) |
||
|
Text
S_TE_1100243_Chapter3.pdf Download (343kB) | Preview |
|
Text
S_TE_1100243_Chapter4.pdf Restricted to Staf Perpustakaan Download (461kB) |
||
|
Text
S_TE_1100243_Chapter5.pdf Download (135kB) | Preview |
|
|
Text
S_TE_1100243_Bibliograpy.pdf Download (270kB) | Preview |
|
Text
S_TE_1100243_Appendix.pdf Restricted to Staf Perpustakaan Download (301kB) |
Abstract
Skripsi ini berisi tentang peramalan beban jangka pendek (STLF) dengan menggunakan metode jaringan syaraf tiruan khususnya algoritma feed forward backpropagation yang dioptimalkan agar mendapatkan hasil dengan nilai error yang tereduksi. Sasaran peramalan adalah beban listrik hari libur yang memiliki pola tidak identik dan berbeda dengan beban hari kerja, dengan kata lain pola yang dimiliki hari libur merupakan sebuah anomali. Dengan kondisi demikian, tingkat akurasi pada suatu peramalan akan menurun. Oleh karena itu, dibutuhkan sebuah metode yang mampu menurunkan nilai error pada peramalan beban anomali. Proses pembelajaran algoritma ini adalah supervised atau terkontrol, sehingga ada beberapa parameter yang diatur sebelum proses komputasi dilakukan. Nilai momentum constanta ditetapkan pada angka 0,8 sebagai acuan karena memiliki kecenderungan konvergen paling besar. Pemilihan learning rate dilakukan hingga 2 angka dibelakang koma. Selain itu, komponen hidden layer dan input turut diuji dalam beberapa variasi jumlah yang berbeda. Hasil pengujian memberikan kesimpulan yakni jumlah hidden layer berdampak besar terhadap keakuratan peramalan dan lamanya pengujian ditentukan oleh banyaknya iterasi yang dibutuhkan saat pembelajaran data input hingga mencapai nilai maksimal dari salah satu parameter.;This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward backpropagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekdays pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constanta value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.
Item Type: | Thesis (S1) |
---|---|
Additional Information: | No. Panggil: S TE ROH k-2016; Pembimbing: I. Ade Gafar, II. Yadi Mulyadi |
Uncontrolled Keywords: | Short term load forecasting, feed forward backpropagation, anomalous electric load, error, Peramalan beban jangka pendek, feed forward backpropagation, beban listrik anomali, error. |
Subjects: | T Technology > T Technology (General) Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4450 Databases |
Divisions: | Fakultas Pendidikan Teknologi dan Kejuruan > Jurusan Pendidikan Teknik Elektro > Program Studi Pendidikan Teknik Elektro |
Depositing User: | Mr mhsinf 2017 |
Date Deposited: | 17 Jul 2017 03:11 |
Last Modified: | 17 Jul 2017 06:07 |
URI: | http://repository.upi.edu/id/eprint/23598 |
Actions (login required)
View Item |