Mulyani, Yani (2016) KOMBINASI SISTEM PAKAR DAN MACHINE LEARNING DENGAN DEMPSTER SHAFER DAN NAIVE BAYES UNTUK DIAGNOSA PENYAKIT DENGAN GEJALA DEMAM. S1 thesis, Universitas Pendidikan Indonesia.
|
Text
S_KOM_1200581_Title.pdf Download (111kB) | Preview |
|
|
Text
S_KOM_1200581_Abstract.pdf Download (289kB) | Preview |
|
|
Text
S_KOM_1200581_Table_of_content.pdf Download (208kB) | Preview |
|
|
Text
S_KOM_1200581_Chapter1.pdf Download (436kB) | Preview |
|
Text
S_KOM_1200581_Chapter2.pdf Restricted to Staf Perpustakaan Download (696kB) |
||
|
Text
S_KOM_1200581_Chapter3.pdf Download (368kB) | Preview |
|
Text
S_KOM_1200581_Chapter4.pdf Restricted to Staf Perpustakaan Download (1MB) |
||
|
Text
S_KOM_1200581_Chapter5.pdf Download (188kB) | Preview |
|
|
Text
S_KOM_1200581_Bibliography.pdf Download (210kB) | Preview |
|
Text
S_KOM_1200581_Appendix.pdf Restricted to Staf Perpustakaan Download (868kB) |
Abstract
Demam merupakan respon tubuh terhadap adanya infeksi. Infeksi adalah keadaan masuknya mikroorganisme kedalam tubuh. Seringkali kebanyakan orang mengalami gejala demam baik itu anak-anak maupun dewasa. Penyebab demam disebabkan oleh virus, seperti virus penyebab Demam Berdarah, Malaria, ISPA (Saluran Pernafasan Akut), meningitis dan Tyfus. Bagi orang awam, ketika seseorang merasakan demam sangat sulit menentukan apakah seseorang itu terkena jenis penyakit dari gejala demam yang bagaimana karena memiliki gejala yang sama yaitu panas dengan suhu tubuh berada di atas 37.5 celcius. Hal tersebut yang melatarbelakangi dilakukannya penelitian yang bertujuan untuk membuat sistem diagnosa penyakit dengan gejala demam dengan kombinasi metode dari sistem pakar dan machine learning yaitu dempster shafer dan naive bayes. Kombinasi ini bertujuan untuk mengatasi kelemahan dari metode dempster shafer agar dapat menghasilkan keakurasian sistem yang lebih akurat. Sistem ini dibuat menggunakan bahasa pemrograman R Language dan PHP. Dengan adanya sistem ini diharapkan dapat membantu ataupun mempermudah penderita dalam mendiagnosa penyakit dengan gejala demam. Sistem ini dalam melakukan diagnosa menggunakan basis pengetahuan dari pakar dan data training yang berjumlah 75 data. Untuk pengujian akurasi digunakan sampling pengujian sebanyak 32 data. ---------- Fever is the body’s response to infection. Infection is the state of the microorganism entry into the body. Most people, either children or adult, often experience fever symptom. The fever could be caused by virus, like dengue fever, malaria, Acute Respiratory Infection (ARI), meningitis, and typhus. When common people feel fever, this will be very hard for them to determine the type of fever disease they get due to the same symptom in which their body temperature is above 37.5 C. This cause is the reason to making this research which head for making fever diagnosis system with combining among the method by specialist system and machine learning - Dempster shafer and Naive bayes. This combination is head for overcome the weakness by Dempster shafer method in order to produce the accurateness of system which more accurate. This system was made by using the proggramming language - R Language and PHP. With presence the specialist system, it was hoped could helping or perhaps facilitated the sufferer to diagnose fever. This system is using the principle of knowledge by the specialist data and training data which is 75 data(s) in amount. For the accurateness test, it was using sample test as much as 32 data(s).
Item Type: | Thesis (S1) |
---|---|
Additional Information: | No. Panggil: S KOM MUL k-2016; Pembimbing: I. Eko Fitrajaya II. Lala Septem Riza |
Uncontrolled Keywords: | demam, sistem pakar, machine learning, dempster shafer, naive bayes, r language, PHP, fever, expert system, machine learning, dempster shafer, naive bayes, r language, PHP |
Subjects: | T Technology > T Technology (General) |
Divisions: | Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam > Program Studi Ilmu Komputer |
Depositing User: | Mr. Tri Agung |
Date Deposited: | 25 Aug 2016 06:43 |
Last Modified: | 25 Aug 2016 06:43 |
URI: | http://repository.upi.edu/id/eprint/21947 |
Actions (login required)
View Item |