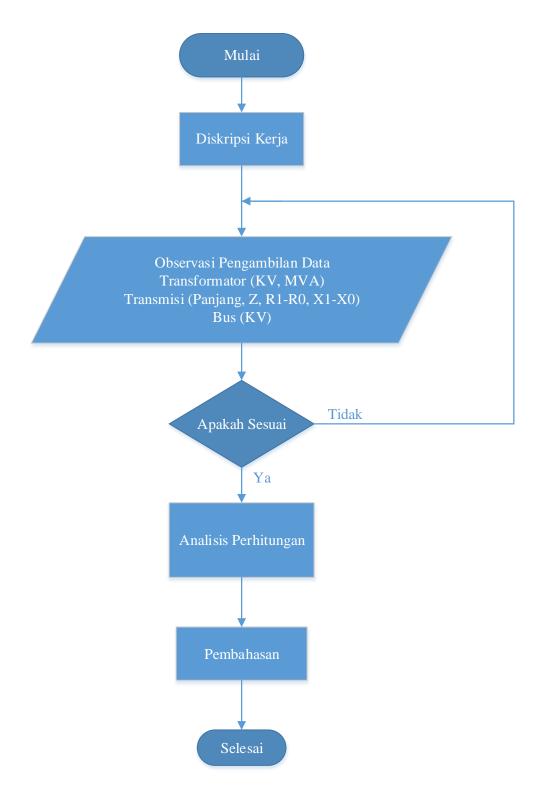
BAB III


METODOLOGI PENELITIAN

3.1 Lokasi Penelitian

Penelitian dilakukan di : PT PLN (PERSERO) Penyaluran dan Pusat Pengatur Beban Jawa Bali (GANDUL), cinere 16514 – Jakarta Selatan, dan PT PLN (PERSERO) Penyaluran dan Pusat Pengaturan beban jawa bali area pelaksanan pemeliharaan Bandung, jalan Moch Toha Km 4 komplek PLN Cigereleng, Bandung – 40225, waktu 4 Maret 2013 – 28 Oktober 2014.

3.2 Diagram Alir Penelitian

Beberapa tahap yang ditempuh dalam proses analisis perhitungan susut tegnagan saluran transmisi regional jabar yang dituangkan dalam diagram alir berikut, yaitu:

Gambar 3.1 Flowcart proses analisis perhitungan susut tegangan

3.3 Analisis Perhitungan Susut Tegangan Saluran Transimi Regio JABAR

Menghitung susut tegangan yang terjadi pada penghantar harus dicari dulu nilai resistannya. Rumus yang digunakan utnuk mencari resistan adalah sebagai berikut

$$R = \rho \frac{l}{A} \tag{3.1}$$

Nilai reaktansi dapat dicari setelah nilai resistannya diketahui, untuk menghitung nilai reaktan adalah dengan menggunakan rumus sebagai berikut :

$$X_L = 2_{\pi} 60x2. 10^{-7} x 10^3 ln \frac{GMD}{GMR}$$
(William D Stevenson, 1990 : 59)

Nilai GMD (Geometric Mean Distance atau jarak rata-rata geometris) dan nilai GMR (Geometric Mean Radius atau radius rata- rata geometris), dapat dicari dengan menggunakan rumus dibawah ini :

$$GMD = \sqrt[3]{D_{AB}D_{BC}D_{AC}}$$
 (3.3)
(Hutahuruk, 1985 : 45)

Untuk menghitung GMR adalah sebagai berikut.

$$GMR = 1,09 \sqrt[4]{D_S D^3}$$
 (3.4)
(Hutahuruk, 1985 : 45)

Saluran transmisi Ungaran – Pedan adalah merupakan saluran transmisi jarak pendek yaitu kurang dari 80 km, sehingga untuk mencari impedannya sebagai berikut:

$$Z = R + iX$$

Data-data hasil perhitungan diatas digunakan untuk menghitung besar tegangan pada ujung beban dan tegangan pengiriman, besar jatuh tegangan, rugi daya pada kawat penghantar, daya pengiriman serta efisiensi transmisi. Rumus-rumus yang digunakan adalah sebagai berikut :

a. Mencari Faktor Daya

$$\cos\varphi = \frac{P}{S}$$

$$S = \sqrt{P^2 + Q^2}$$
(3.5)

Dan

(William D Stevenson, 1990:17)

dengan : P = Daya aktif (Watt)

S = Daya semu (Watt)

Q = Daya rekatif (VAR)

 $\cos \varphi = Faktor daya$

b. Menghitung besar tegangan pada ujung beban adalah:

$$V_r = \frac{Vr_{line}}{\sqrt{3}} \tag{3.7}$$

(Hutahuruk, 1985: 64)

Dengan:

Vr = Tegangan penerimaan (Volt)

Vrline = Tegangan kerja (Volt)

c. Mencari Tegangan Pengiriman adalah:

$$Vs = Vr + IZ \tag{3.8}$$
(Hutahuruk, 1985 : 64)

Dengan

Vs = Tegangan pengiriman

Vr = Tegangan penerimaan

I = Arus (Ampere)

Z = Impedan (Ohm)

d. Mencari Susut Tegangan

$$= \frac{Vs - Vr}{Vr} \times 100\% \tag{3.9}$$

(Arismunandar dan Kuwahara, 1993:2)

dengan

Vs = Tegangan pengiriman

Vr = Tegangan penerimaan