DESAIN MODEL UNTUK PRAKIRAAN BEBAN JANGKA MENENGAH DENGAN REGRESI MULTIPLE DAN JARINGAN SYARAF TIRUAN : Studi Kasus Pada PT.PLN (Persero) P3B Jawa Bali Region IIJawa Barat

    Bramana, Andrian (2014) DESAIN MODEL UNTUK PRAKIRAAN BEBAN JANGKA MENENGAH DENGAN REGRESI MULTIPLE DAN JARINGAN SYARAF TIRUAN : Studi Kasus Pada PT.PLN (Persero) P3B Jawa Bali Region IIJawa Barat. S1 thesis, Universitas Pendidikan Indonesia.

    Abstract

    Penelitianinimengkajitentangdesain model untukperkiraanbebanlistrikjangkamenengahdenganmetodemultiple regressiondanmetodebackpropagationberbasisjaringansyaraftiruan. Data yang dipakaiadalah data bebanlistrikdari PT. PLN (Persero) P3B Jawa Bali Region II Jawa Barat setiapbulanmulaijanuarisampaidengandesembermulaidaritahun 2007 sampaidengan 2013 yang kemudian data tersebutakandilakukanpembuatan model multiple regressiondenganmelakukanperhitungandenganmicrosoft excel. SedangkanuntukmetodeBackpropagationberbasisjaringansyaraftiruan data tersebutakandibelajarkanpadasistemperangkatlunak yang sudahdirancangdenganalgoritmabackpropagation.Softwarependukunguntukmerancang program tersebutdigunakanMatlab ver. R2009a dariThe MathWork. Inc. melaluiperhitungandarihasildesain model denganmenggunakanmetodemultiple regressionmenunjukkanrata-rata error 0,0114atausebesar 1.14% dandarihasilujiforecastuntuk data digesersatutahunmenunjukan rata-rata error 0.0386 atausebesar 3.86% halinimasihdalamtoleransinilai yang diberikanoleh PT. PLN yaitusebesar 5%. Sedangkandarihasilsimulasidesain model load forecastingdenganmetodebackpropagationberbasisjaringansyaraftiruanmenunjukantingkaterror rata-rata sebesar 0.012% dengannilaiepoch 9000 dannilailearning ratepada 0,5. Dengandemikiandapatdisimpulkanbahwaperamalanbebanlistrikjangkamenengahdenganmenggunakanmetodebackpropagationberbasisjaringansyaraftiruanlebihbaikdibandingkandengandesain model perkiraanbebanlistrikdenganmenggunakanmultiple regression.
    This studyexamines thedesign ofa modelforthe medium-termelectricityloadforecastby the method ofmultiple regressionandback propagationmethodbased onartificial neuralnetworks. The dataused is theelectricityload datafromPT. PLN(Persero) P3BJawaBaliRegionIIWest Javaeverymonth startingJanuaryuntil Decemberrangingfrom 2007to 2013and thenthe data isperformedmultiple regressionmodelingtoperformcalculationswithMicrosoft Excel. As for themethod ofbackpropagationartificial neuralnetwork-based datawillbe taughtina softwaresystemthat has beendesignedwithback propagationalgorithm. Supporting softwareis usedto designthe programMatlabver. R2009afrom TheMathWork. Inc..throughthe calculationofthe results ofthe designmodelsby usingmultiple regressionmethodshowsan averageerrorof1.14% or0.0114oftest resultsandforecastsforthe datais shiftedoneyearshowedan averageerrorof0.0386or3.86%, this is stillwithinthe tolerancevaluegivenbyPT. PLNis equal to5%. While the results ofthe simulationmodel designloadforecastingmethodbased onback propagationneural networksshowan averageerrorrateof0.012% with a9000epochvalueandthe valueof learning rateat 0.5. It can be concludedthat themid-termelectricload forecastingusing amethodbased onback propagationneural networkis better than thedesignestimatemodelsof electricloadby usingmultiple regression.

    [thumbnail of S_TE_0902244_Title.pdf]
    Preview
    Text
    S_TE_0902244_Title.pdf

    Download (148kB) | Preview
    [thumbnail of S_TE_0902244_Abstract.pdf]
    Preview
    Text
    S_TE_0902244_Abstract.pdf

    Download (131kB) | Preview
    [thumbnail of S_TE_0902244_Table_of_content.pdf]
    Preview
    Text
    S_TE_0902244_Table_of_content.pdf

    Download (204kB) | Preview
    [thumbnail of S_TE_0902244_Chapter1.pdf]
    Preview
    Text
    S_TE_0902244_Chapter1.pdf

    Download (144kB) | Preview
    [thumbnail of S_TE_0902244_Chapter2.pdf] Text
    S_TE_0902244_Chapter2.pdf
    Restricted to Staf Perpustakaan

    Download (633kB)
    [thumbnail of S_TE_0902244_Chapter3.pdf]
    Preview
    Text
    S_TE_0902244_Chapter3.pdf

    Download (605kB) | Preview
    [thumbnail of S_TE_0902244_Chapter4.pdf] Text
    S_TE_0902244_Chapter4.pdf
    Restricted to Staf Perpustakaan

    Download (917kB)
    [thumbnail of S_TE_0902244_Chapter5.pdf]
    Preview
    Text
    S_TE_0902244_Chapter5.pdf

    Download (346kB) | Preview
    [thumbnail of S_TE_0902244_Bibliography.pdf]
    Preview
    Text
    S_TE_0902244_Bibliography.pdf

    Download (129kB) | Preview
    Official URL: http://repository.upi.edu
    Item Type: Thesis (S1)
    Additional Information: No. Panggil S TE BRA d-2014 ; Pembimbing : I. Sumarto, II. Tasma Sucita.
    Uncontrolled Keywords: Peramalan Beban Jangka Menengah, Multiple Regression, Jaringan Syaraf Tiruan Berbasis Back propagation, Beban Listrik
    Subjects: L Education > LC Special aspects of education
    T Technology > TA Engineering (General). Civil engineering (General)
    Divisions: Fakultas Pendidikan Teknik dan Industri > Jurusan Pendidikan Teknik Elektro
    Depositing User: Staf Koordinator 3
    Date Deposited: 29 Jul 2015 07:59
    Last Modified: 29 Jul 2015 07:59
    URI: http://repository.upi.edu/id/eprint/15378

    Actions (login required)

    View Item View Item